
DRENCH: A Semi-Distributed Resource Management Framework for
NFV based Service Function Chaining

Argyrios G. Tasiopoulos‡, Sameer G Kulkarni∗, Mayutan Arumaithurai∗, Ioannis Psaras‡,
K.K. Ramakrishnan†, Xiaoming Fu∗, George Pavlou‡

∗University of Göttingen, Germany, ‡University College London, †University of California, Riverside.

Abstract—As networks grow in scale and complexity, the use
of Network Function Virtualization (NFV) and the ability to
dynamically instantiate network function instances (NFI) allow
us to scale out the network’s capabilities in response to demand.
At the same time, an increasing number of computing resources,
deployed closer to users, as well as network equipment are now
capable of performing general-purpose computation for NFV.
However, NFV management in the presence of Service Function
Chaining (SFC) for arbitrary topologies is a challenging task.

In this work we argue for the necessity of an algorithmic
resource management framework that captures the involved
tradeoffs of NFIs minimum workload, load balancing, and flow
path stretch. We introduce DRENCH as a low complexity NFV
and flow steering management framework. In DRENCH a NFV
market is considered where a centralised SDN controller acts as
market orchestrator of NFV nodes. Through competition, NFV
nodes make flow steering and NFI instantiation/consolidation
decisions. DRENCH design enables third party NFV nodes
participation while it can coexist with other NFV management
solutions. DRENCH orchestrator parameterisation strikes the
right balance between path stretch and NFI load balancing,
resulting in significantly lower Flow Completion Times, up to
10× less, in some cases.

I. INTRODUCTION

Middleboxes (MBs) are becoming ubiquitous in today’s
networks. MBs have typically been constructed from purpose-
built hardware, customized to perform specific tasks. Once
setup, a network of MBs cannot alter its structure (e.g., topol-
ogy) or (service) functionality (e.g., morph from one service
to another). Network Function Virtualisation (NFV) [1] has
been proposed to increase flexibility in the network, evolving
MB architectures to virtual, or software-based services on top
of commercial off-the-shelf (COTS) hardware. NFV promises
to increase flexibility and achieve efficiency in using network
resources, since both the structure and the (service) function-
ality of NFV nodes can be adjusted dynamically in response
to service demand. Finally, Service Function Chaining (SFC),
which determines the chain of NFV-based MB services a flow
has to pass through, is gaining momentum as a necessary
network process.

In order to exploit the full potential of virtualised Network
Function Instances (NFIs), we argue that: i) NFIs have to be
dynamically placed, replicated, instantiated and terminated (or
consolidated), ii) new incoming flows have to be dynamically
steered to the least-expensive NFI (in terms of current network
and computation load), and iii) active, existing flows have
to be redirected (if and when needed) to other instances
of the same service in order to balance the load between
NFIs of this service. Following this line of argument, we

introduce and make the case for a resource management
framework that dynamically handles NFIs and flow traffic,
in order to load-balance i) network load in links and ii)
computation load in NFV boxes. In designing such a resource
management framework, we consider all potential options, that
is, from centralized, software-based control plane approaches
to decentralized, hardware-oriented data plane approaches. We
find that a centralized controller can become the bottleneck
when assigned with the task of making real-time decisions
on service placement, instantiation, termination and flow
steering/redirection. On the other hand, a purely distributed
approach suffers from increased latency and overhead in order
to exchange information between decision-making nodes, a
process that also raises stability issues.

We argue for the need of a hybrid solution, where the (log-
ically) centralised SDN controller performs lightweight tasks,
related to the NFV environment coordination and flow setting-
up of state; while the distributed network of NFIs makes
more frequent decisions, that impact flow latency. Despite
the multiple SDN-NFV architectures proposed in recent years
(e.g., E2 [2], Stratos [3], Slick [4], SDNFV [5]), the problem
of resource allocation and management in such environments
has not received as much of attention.

In this paper, we propose a semi-DistRibutEd resource man-
agement framework for NFV based service function CHaining
(DRENCH). DRENCH incorporates a traffic load-balancing
algorithm that utilises dynamic estimation of NFI loads with
each NFV node independently directing flows to an appropri-
ate least-loaded service instance; DRENCH utilises a real-
time service instantiation capability and redirects existing
flows as necessary; DRENCH is applicable for an NFI based
Service Function Chaining environment by using a centralised
SDN controller to disseminate information among the NFV
nodes in the network. DRENCH as a resource management
framework can fit into most of the existing architectures, albeit
with some modifications.

We realise DRENCH in the context of SDN-NFV archi-
tectures by defining a NFV nodes market environment. In
particular, an SDN controller acts as the market orchestra-
tor/regulator, assigning prices to NFIs which are indicative
of their workload. At the same time, NFV nodes aim the
increase of their ‘income’; meaning, that NFV nodes aim
to host popular NFIs that result in higher prices. In more
detail, when the demand for a service increases (declines)
the price of the service NFIs rises (decreases) accordingly,
which in turn may drive NFV nodes to instantiate (consolidate

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/154748099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the) NFIs of the corresponding service. In addition to NFIs
instantiation/consolidation, each NFV node is also responsible
for taking flow steering and redirection decisions.

In DRENCH the market orchestrator is setting the con-
trol parameters of i) minimum NFI price and ii) off path
penalty factor. The minimum NFI price defines a threshold
for consolidating NFIs whose prices are below the minimum
one. Since NFIs’ prices are representative of their workload,
the minimum NFI price indicates the threshold below which
an NFI is considered being under-utilised thereby controlling
the number of active NFIs. On the other hand, the off path
penalty factor controls the path-stretch of a flow in the context
of SFC thereby penalising the choice of NFI that force the
flow to deviate from its shortest path towards the destination.
Considering Flow Completion Time (FCT) as an index of flow
performance, DRENCH minimum NFI price (off path penalty
factor) defines the tradeoff between under-utilised instances
(flow path stretch) and FCT.

The main technical contributions of this paper involve:
• A feasible NFV management approach: in DRENCH re-

source management decisions are taken locally by NFV
nodes while the market orchestrator solves lightweight prob-
lems, addressing a complex problem in an computationally
feasible way with respect to i) path-stretch, ii) number of
active NFIs per service, iii) load on each NFI and iv) flow
completion time.

• A decoupled NFV resource management framework: in
DRENCH NFV nodes do not have to be owned by the same
entity, contributing in the incremental adaptation of NFV in
arbitrary network topologies.

• Implementation and large scale evaluations: We prototyped
DRENCH in Cloudlab testbed and Mininet to demon-
strate that DRENCH is immediately deployable in an SDN
environment. With Mininet, we compare DRENCH to a
centralized approach Slick [4] on a 4K-Fat tree topology.
Additionally, we compared DRENCH in a simulation envi-
ronment consisting of a Rocketfuel topology (87 switches)
to a custom centralized approach: Simplefying [6] on top of
a E2 SDN framework [2]. Our results show that DRENCH
is robust to: i) asymmetries caused by dynamics of ar-
rival/departure of elastic flows with different service needs,
and, ii) the instantiation/removal/failure of service instances
(see Section VI).

II. RELATED WORK

In the case of purely centralized solutions, the complexity
(NP-hard in many cases) involved in the decision making for
service instantiation and flow redirection results in a much
coarser granularity of decision making. Solutions can only
be based on heuristic-based approaches [7], or act on a per-
flow basis [8]. SIMPLE [6] relies on an offline Integer Linear
Programming (ILP) solver to optimise the number of flow rules
on the switches and an online Linear Programming (LP) solver
for load balancing. However, SIMPLE [6] assumes that the
NFIs and middleboxes are statically placed and any dynamic
instantiation of NFIs requires the re-run of the expensive

offline ILP solver. Slick [4] provides a programming model
abstraction for service chaining and supports heuristic based
function placement and flow steering schemes. Slick [4] also
supports dynamic scaling of NFIs. However, it does not
redirect the existing flows from the overloaded instances, but
only steers the new flows to the scaled-out instances.

By and large, related works in this area have targeted only
newly-arriving flows, while works such as Split/Merge [9] that
address flow-redirection need to pause the existing flows for
transferring VNF internal and forwarding states. On the other
hand, purely distributed approaches for load balancing (e.g.,
TeXCP [10], CONGA [11]) face a different set of issues,
such as: i) high overhead and latency: a large amount of
information has to be exchanged among decision making
nodes to synchronise their view of network state, with the
consequent latency as the network scales; ii) complexity:
achieving a stable synchronised view at every decision making
node is complex; and iii) inefficiency and stability: since each
node makes its decision based on its local view of the network
state, packet loss, frequent rerouting, and transient loops are
likely. In [12], authors employ the concept of shadow-prices
to trade-off performance, QoS, and complexity, but they limit
their scope only to address the flow steering in SFC.

Framework: OpenNF [13] provides the framework for
control plane to make the decisions and migrate flows from
NFI. It requires the events to be generated by NFIs and
buffered at the controller for the interval of state migration.
Stratos [3] provides an orchestration framework that employs
rack-aware NFI placement strategy with horizontal scaling and
migration of NFIs. The load/flow distributions are computed
by an ILP formulation where only new flows are steered to
the new instances while the existing flows continue to get
processed at the same NFI, without alleviating the load on the
already bottle-necked instance. E2 [2] is an NFV scheduling
framework that supports affinity based NFI placement and
dynamic scaling of NFIs. The framework tries to minimise the
traffic across switches and load balance the traffic across NFIs,
however it avoids flow redirections across hardware switches.

To the best of our knowledge, DRENCH is the first work
that tackles both NFI placement and flow steering problems
in arbitrary topologies; providing a computationally feasible
algorithmic resource management framework inspired by the
principles of market competition.

III. DESIGN OVERVIEW

A. Desired Properties

DRENCH is an in-network, congestion-aware, load balanc-
ing algorithmic framework for handling SFCs and dynamic
NFIs in arbitrary network topologies. In designing DRENCH,
we focus on providing the following key properties:

P1 Efficiency: As an NFI placement mechanism, DRENCH
should neither under-utilise nor over-utilise the resources
available in NFV nodes.

P2 Cost awareness: DRENCH should instantiate the min-
imum NFIs to meet the requirements of the SFCs for

Fig. 1: DRENCH High-Level Operation

the flows through the network at any point in time, and
balance the utilization across the active NFIs.

P3 Fine-grained flow handling: DRENCH must meet each
flows’ SFC functional requirements and meet end-to-end
latency and minimum throughput requirements.

P4 Responsiveness: DRENCH should react to SFC traf-
fic requirements, especially when traffic is volatile and
bursty[14], [15], for arbitrary network topologies.

P5 Incremental deployability: DRENCH should require
the minimum possible changes in terms of protocols
and network infrastructure. It should also be applicable
to any of the existing SDN architectures [2], [13], [5]
with minimal changes. Further, it should be possible
to directly apply DRENCH to a subset of available
switches and of incoming traffic when necessary.

B. DRENCH Solution Overview

Our framework is designed to leverage the benefits of the
centralised as well as the distributed networking paradigms.
We use the centralized approach, i.e., an SDN controller, to
perform tasks with less computation load, but those that need
to be carried out in a coordinated fashion across multiple
nodes. These tasks include: i) gather, compute and disseminate
NFI load information periodically to all the decision making
entities; and ii) set up paths towards instances and egress
nodes in case they do not already exist. Additionally, the SDN
controller is used to decide which services are applicable
to a flow (based on policies and/or flow characteristics).
This design choice reduces the complexity of the controller
and also overcomes the issues faced by a purely distributed
approach, where the decision making entities might not have
up to date information, thereby impacting performance. On
the other hand, a distributed approach is used for decision
making at individual NFV nodes. Based on the information
provided by the controller, each node independently decides
to i) steer flows towards the next required service; ii) redirect
flows to the least loaded instance; and iii) instantiate/terminate
service instances in order to adapt to demand. The high-level
operation of the proposed mechanism is shown in Fig. 1.

IV. DRENCH COMPONENTS

DRENCH consists of the following components:
• Market Orchestrator: It associates every NFI and link

resource to a shadow price (i.e., cost) produced by utilising
global information available at the controller. The orches-
trator regulates the market by allowing the existence of
instances above a certain minimum price.

G Network Topology
V Set of Switches
E Set of Links
H Set of NFV Nodes
S Set of Services
Hs Set of NFV Nodes executing service s
F Set of ENUM Flows
xf Rate of Flow f

Uf (xf) Utility Function of Flow f

be Bandwidth Capacity of Link e
ae,f Coefficient = 1, if flow f traverses link e
bhs Computational Resources of NFI s at h
dhs,f Coefficient = ds if f is processed by NFI s at h
ds Computational Power Required by NFI s

for processing a single bit of traffic
wf Weight of flow f
λhs Service Cost of NFI s at NFV node h

λ, λ̄ Minimum and Maximum shadow prices
defining the efficiency of an instance

pvi,vj Shortest path from vi to vj
µvi,vj Communication Cost from vi to vj
Cvi,h(s) Communication and service cost from switch vi

to a NFI executing service s an NFV node h
|pvi,vj | Number of Hops from vi to vj
∆pfvi,h

Shortest path deviation overhead
ρ Off Path Penalty Factor

Cfvi,h(s) Estimated Cvi,h(s) cost of flow f including ρ
θrid Redirection threshold
Ph Profit of NFV h in terms of shadow prices

λ̃on, λ̃off , λ̃ On-/Off- path and expected competitive price

TABLE I: DRENCH Notation Description

• Flow Steering and Redirection: This component steers
each flow through a valid sequence of NFIs (according to
its SFC) determined by the SDN controller. Steering and
redirection takes into account latency, NFI and link costs.

• NFI Instantiation/Consolidation: This component instan-
tiates and consolidates NFIs in a distributed way through
the market competition between NFV nodes.

Below, we describe each of these components in detail.

A. Market Orchestrator

DRENCH, as any market-based approach, requires the
association of each network resource (commodity), in terms
of NFIs and link bandwidth, to an offered price, which is
imposed on a given set of incoming flows (demand) that utilise
this resource. In particular, when the quantity of demanded
resources equals the quantity supplied for a set of prices, we
refer to them as market-clearing prices. DRENCH market-
clearing prices should A1) be representative of each NFI’s
workload, A2) achieve the minimum possible convergence
time, A3) not require additional in-network signalling given
the existence of an SDN controller [16], [11]. Every price
derivation violating requirement (A2) and (A3) would be in
stark contrast with DRENCH desired properties wrt respon-
siveness (P4) and incremental deployability (P5), respectively.

DRENCH deploys a Market Orchestrator/Regulator
component, which, by utilising only flow path information,
already available at the SDN controller, efficiently derives

market-clearing prices that comply to requirements (A1)-(A3).
Inspired by [17], where the authors formulate a Network
Utilisation Maximisation problem (NUM) based on market
principles to allocate bandwidth resources to a set of flows, we
extend their model to include NFI computational resources.
We achieve this by solving the Extended Network Utilisation
Maximisation problem (ENUM) at the Market Orchestrator
as we describe next.

We denote the network topology by G = (V, E), of V
switches and E links, where a set of NFV nodes, H, is placed
at a subset of switches H ⊆ V . Then, given a set of NFIs
executing the set of S services, and a set of flows f ∈ F , we
associate each link, ∀e ∈ E , with a bandwidth capacity be, and
each NFI s at NFV node h with bhs computational resources, in
order to form the ENUM problem that maximises the total util-
ity of the system. Similar to NUM, we associate each flow rate,
xf ≥ 0, with a utility that is a weighted logarithmic function,
Uf (xf) = wf log(xf), of weight wf , capturing a decreasing
marginal gain as the flow rate increases (i.e., lower rate flows
cause bigger increase of the utility). In turn, we maximise
the total system utility,

∑
f∈F

Uf (xf), subject to link capacity

constraints,
∑
f∈F

ae,fxf ≤ be, ∀e ∈ E , and computational

resource constraints,
∑
f∈F

dhs,fxf ≤ bhs , ∀s ∈ S,∀h ∈ H;

where ae,f is a coefficient equal to 1 if flow f traverses
link e and 0 otherwise, while dhs,f equals the computational
power required by service s for processing a single bit of
traffic, ds, if f is executed at NFI s of NFV node h, and 0
otherwise. Parameters ae,f and dhs,f describe the path of each
flow and therefore they are known to the SDN controller
which provides them to the Market Orchestrator.

Since the objective function is differentiable and strictly
concave, while the feasible region of the constraints is
compact, the optimal rates xf ∀f ∈ F exist, are unique, and
can be found efficiently by Lagrangian methods. Based on
[17], it can be shown that the dual problem of the ENUM is:

maximise
∑
f∈F

wf log (
∑
e∈E

µeae,f +
∑
h∈H

∑
s∈S

λhsd
h
s,f)

−
∑
e∈E

µebe −
∑
h∈H

∑
s∈S

λhs b
h
s

subject to
µe ≥ 0, ∀e ∈ E ,
λhs ≥ 0, ∀s ∈ S,∀h ∈ H,

(1)

where µe and λhs are the Lagrange multipliers of link e and
service instance s at NFV node h respectively. The Lagrange
multipliers are also known as shadow prices, due to their
association to the optimal rates of each flow:

xf =
wf∑

e∈E
µeae,f +

∑
h∈H

∑
s∈S

λhsd
h
s,f

(2)

where weight wf is perceived as the budget that flow f is
willing to pay for its rate, while the denominator is the cost
imposed to the flow in order to use the resources along its path.

In that sense, each Lagrange multiplier can be considered as
the price of a particular resource, leading us to the following
definition about communication and service cost.

Definition 1: The communication cost between two
switches, vi, vj ∈ V , is the sum of on-path link shadow
prices µvi,vj =

∑
e∈pvi,vj

µe, where pvi,vj is the shortest
path between switches vi and vj ; while the service cost of
an instance s at NFV node h is the shadow price λhs .

Note that the service and communication costs are kept in
the forwarding tables of the NFIs, i.e., the decision making
nodes, and are updated periodically by the SDN controller
after being estimated by the Market Orchestrator (see Fig. 1).

Shadow prices are indicative of the workload at a particular
resource, complying with (A1). In fact, from (2), we derive
that the value of a shadow price, λ, defines the maximum
possible rate that flows using that resource can achieve, wf/λ.1

Based on the maximum achievable flow rate we can define the
efficiency of a NFI as a range of shadow prices.

Definition 2: The Market Orchestrator determines the load
of a NFI by a shadow price range [λ, λ̄], where if a service
cost, λhs , is less/more than λ/λ̄ the NFI is considered under-
/over-utilised, respectively.

Given the shadow price range [λ, λ̄] the Market Orchestrator
tries to maintain the minimum required number of instances
per service type (P2) by: i) terminating instances that are
underutilised and ii) allowing for more instances for services
whose existing instances are over-utilised (see Section IV-C).

B. Flow Steering and Redirection

1) Flow Steering: Given a placement of NFIs and their
respective shadow-prices, as determined by the Market Or-
chestrator, DRENCH’s flow steering component is responsible
for steering each new incoming flow towards the chain of
required services. The flow steering component tries to route
the flow through the chain that imposes the lowest possible
cost to the flow. Determining the optimal end-to-end path
of a flow through the SFC is a NP-complete problem [18].
DRENCH works on a hop-by-hop heuristic basis, picking each
time the best next-hop NFI choice, in an effort to achieve
instantaneous and adaptive steering decisions (P4).

We illustrate DRENCH’s flow steering component through
the following example. Assume that flow f arrives at the
network requiring the execution of service s (or service
chain s1/s2/.../sm) before being delivered to destination vf .
Let vi be the switch that has to make a steering decision
about f and Hs ⊆ H the set of NFIs of service s. Then
the combined communication and service s execution cost at
h ∈ Hs is Cvi,h(s) = µvi,h +λhs . The DRENCH flow steering
component initially estimates the shortest path deviation
overhead applied by steering flow f to instance h in terms
of hops, ∆pfvi,h = |pvi,h| + |ph,vf | − |pvi,vf |, weighted by
an off-path penalty factor ρ. Therefore, the estimated cost

1It follows that the shadow prices are positive when a resource is totally
utilised and 0 otherwise. To introduce a minimum workload to the resources
that are not saturated, we add a set of dummy flows into F when solving (1).

applied to the flow for executing service s at NFI of h is
Cfvi,h(s) = Cvi,h(s) + ρ∆pfvi,h. Then, vi selects the next
service instance s of f that minimises Cfvi,h(s):

h∗ = argmin
h∈Hs

Cfvi,h(s) (3)

In Eq. (3) the off-path penalty factor, ρ, dis-incentivises
node vi from sending flow f away from its shortest path
towards vf . Eq. (3) applies on a hop-by-hop basis, that is,
it is calculated at each NFV node responsible for forwarding
flow f towards the next instance in its chain.

Lastly, upon making a steering decision, switch vi informs
the SDN controller that flow f is forwarded towards h∗ to exe-
cute service s. At the same time, the SDN controller is setting
up paths towards NFIs and/or egress nodes as necessary.

2) Flow Redirection of Stateless and Stateful flows: The
cost of a service instance might change dramatically through-
out the duration of a flow, rendering previous flow steering
decisions outdated. Therefore, redirection of existing flows is
necessary in order to keep the expenditure of existing flows
at low levels (P3-P4) and avoid routing through overutilised
instances (P1). We realise flow redirection as follows: if the
cost difference between two instances of s at h and h′, as
seen by switch vi, is bigger than a redirection threshold, θrid,
Cvi,h(s)−Cvi,h′(s) > θrid, switch vi repeats the flow steering
process for a portion of flows that vi currently forwards to h.
The redirection threshold is set to θrid = λ̄− λ.

Rerouting of stateful flows to dynamically instantiated ser-
vices to achieve optimal load balancing is usually complex and
costly. For instance, solutions such as Split/Merge [9], pause
ongoing flows in order to transfer internal NF and forwarding
states. For the purposes of DRENCH, we rely on work like
OpenNF [13] and Split/Merge [9]. We leverage the approach
in Split/Merge [9], to pause ongoing flows and transfer internal
NF state. To identify the service instances, we make use of
the Information Centric Networking (ICN) construct which is
proven to be beneficial in terms of providing flexible routing,
and reducing the routing states at the switches [19].

C. Instantiation

In DRENCH, NFV nodes autonomously provide services
and try to maximise their profit, in terms of shadow prices
(i.e., the cost to execute some service). In particular, let Sh be
the set of NFIs at some NFV node h, then the profit of h in
terms of shadow prices, λhs , can be estimated, as:

Ph =
∑
s∈Sh

λhs (4)

DRENCH NFI instantiation/consolidation scheme defines how
service demand and NFI shadow prices affect the individual
NFV node decisions to manage the number of service in-
stances. Through competitiveness, NFV nodes achieve respon-
siveness to NF demand changes, while the market orchestrator
ensures market efficiency, as we explain next.

1) NFV Node Competitiveness: Let the shadow price of an
NFI s′ at NFV node h′ be λ′. We are interested in estimating
the competitive price of a potential NFI s at an NFV node h,
h 6= h′, with respect to λ′.

Definition 3: The competitive price of NFI s is defined as the
shadow price that renders the flow steering scheme to consider
s to be at least as good as s′.

Then, let µ be the communication cost, between NFV node
h′ and h that are ∆p hops away, and f be a new flow
that is about to get steered at NFI s′. Then according to
DRENCH’s flow steering component, the smallest possible
competitive price at s for flow f , would be equal to λ̃off =
[λ′ − µ− ρ∆p]+, where ρ is the off-path penalty factor. The
off-path penalty factor is taken into account as in the worst
case flow f will have to traverse ∆p additional hops to reach s
from s′.2 This acts as a disincentive for some node to forward
traffic to nodes that are far off from the flow’s shortest path.
On the other hand, in the best case, flow f is forwarded to
NFV node h′ by NFV node h, meaning that s is already on the
path of flow f and additional hops are not required3. Hence,
in the best case, the competitive price at s for flow f would
be λ̃on = λ′ + µ.

The expected competitive price of NFI s with respect to
NFI s′ price λ′ will be a value between (λ̃off , λ̃on). Let y be
the total amount of traffic with competitive price λ̃on. Then y
can be considered as the local information of NFI s′ demand
at NFV h that accounts for the utilization percentage ds′y/bh

′

s′ .
Here, ds′ is the computational power required by the service of
NFI s′ for processing a single bit of traffic and bh

′

s′ is the fixed
computational resources that are allocated to NFI s′. Then the
expected competitive price is estimated as:

λ̃ = (ds′y/b
h′

s′)λ̃on + (1− ds′y/bh
′

s′)λ̃off (5)

2) NFI Instantiation: As long as a NFI shadow price, λ,
executing a service at NFV node h, is lower that the maximum
target price, λ < λ̄, this service is not considered over-utilised
and an instantiation of an additional NFI of the same service
at h is prohibited (see also Definition 2). On the other hand,
if λ > λ̄, the Market Orchestrator limits the number of NFI
that can be created by competing the NFI with service cost
λ to bλ/λ̄c. Therefore, given the set of allowed services for
instantiation at each NFV node h, h estimates the expected
competitive prices of every NFI. Then moving from the highest
to the lowest competitive price, the NFV node instantiates the
service associated with the price λ̃ as long as i) it is expected
that the instance will not be under-utilised, λ̃ > λ, and ii) the
Market Orchestrator maximum number of instances allow it,
respecting properties (P1), (P2), and (P4).

3) NFI Consolidation: If the price of an instance is below
the minimum target shadow price, λ, the NFV node consoli-
dates this instance (P2). When there is a service availability
requirement, the market orchestrator can hinder the consoli-
dation of the last instance of that service.

2[·]+ denotes the projection onto nonnegative orthant.
3In fact it is not the NFV node that is aware of the forwarded traffic but

the switch that the NFV node is attached to

V. IMPLEMENTATION

The prototype implementation of DRENCH consists of
SDN controller, Open vSwitches and custom virtual NFIs.
Overall implementation including the extensions needed for
the DRENCH controller and NFI support is ∼ 1800 LOC.

A. Control Plane: DRENCH Controller
We extended Pox4 to serve as DRENCH’s controller. Policy

specification is provided as input to the controller.
Flow Classifier and Policy Enforcement: The DRENCH

controller performs fine-grained flow classification, based on
the standard IP 5-tuple. As per the mappings in policy specifi-
cation, it applies the sequence of desired service functions. We
dedicate the combination of IP-DS field and L4: destination
port to represent the service chain ID and the sequence of
functions in the service chain respectively.

Flow Steering: In order to be more flexible, and readily
deployable with NFIs, we rely on the switch-based service
chain/network function ID mapping that can be supported by
openflow switches, without the need for any modifications to
the NFI. The controller sets the path from the Ingress/NFV
node to the next NFV node/destination in the chain. For better
granularity at each ingress or intermediate NFV node, the
flow rules are setup based on the match obtained from flow-
classification - this readily enables the capability to match and
correlate the packets that enter/exit the NFIs, even when NFIs
modify the packet headers, while the rest of the intermediate
and egress switches are setup with a tunnel. For tunneling, we
leverage the named instance source routing scheme [19] with
an improvement for the tag, which is defined as follows:
VNF-ID = InstanceID|SVC-ID, where the InstanceID is de-
fined by CoreID|SW-ID.
This enables the paths to be setup pro-actively on all the
intermediate switches as soon as an NFI is discovered in the
network. Our proposal of ID based tunnelling can be realized
by using either the Multi-Protocol Label Switching (MPLS)
or VLAN tags, underlay (unused IP/TCP header fields like
DS/option fields) or with Network Servie Header (NSH) [20].
The choice of Layer-2.5 (MPLS) or Layer-2 (VLAN) tag
makes it convenient to define the match in Openflow switches,
i.e., by being agnostic to L3/L4 fields allow any TCP/UDP
flow to be matched with a same rule. This helps to significantly
reduces the number of switch rules. As most MBs readily
support VLAN as opposed to MPLS [21], we make use of
Layer-2 tags to realize the NFI-based tunnels.

B. Data Plane: Openflow Swithces and Network Functions
One of the key challenges we faced in the implementa-

tion of DRENCH in our prototype was the non-availability
of a MB/NFV-capable switch in the Mininet environment.
Therefore, we realized NFIs as hosts connected to the switch.
However, this resulted in additional challenges since Open-
Flow is designed with a Southbound API control channel
between the controller and network switches, but not the
hosts. Therefore, any information (e.g., estimated costs of

4https://openflow.stanford.edu/display/ONL/POX+Wiki

ρ=0.0 ρ=0.1 ρ=0.3 ρ=0.6
0

5

10

15

20

25

Fl
ow

 C
om

pl
et
io
n
Ti
m
e

(a) Flow Completion

ρ=0.0 ρ=0.1 ρ=0.3 ρ=0.6
0

2

4

6

8

10

12

14

Pa
th
 D
ev

ia
tio

n

(b) Path Deviation
Fig. 2: Off-path penalty (x-axis)

other instances or shadow-price) that had to be exchanged
between the controller and the NFV-hosts had to be performed
either via the switch (e.g., we used LLDP packets to make
the controller aware of the presence of NFV-hosts) or via
a separate channel. In a real-world deployment, we believe
that this would not be the case since NFV nodes will have a
Southbound-API based channel from the controller through an
in-built switch. Once the communication channel’s established,
the controller was able to both obtain and disseminate cost
related information periodically. Additionally, to demonstrate
that the NFI capability can be realized on Openflow switches,
we implemented on each host a host-local Open vSwitch and
controller. The host interface is setup as a port of the local
vSwitch. This way, we leveraged the local Open vSwitch and
Pox controller to implement the VNF specific functionality,
i.e., to monitor and disseminate NFI specific load information
and communicate it to the global controller.

VI. EVALUATION

Our goal is three-fold: i) study the effect of different
DRENCH parameters, the resulting trade-offs and the impact
on performance in order to fine-tune DRENCH; ii) highlight
the benefits of DRENCH on a controlled topology (we per-
form these evaluations on a CloudLab5 test-bed); and iii)
compare the performance of DRENCH with other approaches
in large scale scenarios (both data-center and Rocketfuel
topologies). We make use of the DRENCH prototype on
a data-center topology in a Mininet Cluster6 to study the
benefits of DRENCH in terms of FCT, delay, number of
active NFIs, NFI utilization and the impact of redirection. We
compare DRENCH against a centralized approach (Slick [4])
and against DRENCH without redirection (DwoR).

Moreover, we build a custom-based simulator to study
the benefits of DRENCH in terms of path deviation, avg.
throughput and FCT in comparison to the custom centralized
approach: Simplefying [6] on top of a E2 SDN framework [2].
Unlike similar work that focuses on latency requirements in
service chains, we also emphasize on FCT - arguably the most
important metric for the user [22].

A. DRENCH Parameter design and study of tradeoffs
We implemented DRENCH on a python-based discrete

event simulator using SimPy,7 in order to be able to quickly
fine-tune DRENCH’s parameters and to perform large scale

5https://cloudlab.us
6http://mininet.org
7http://simpy.readthedocs.io/en/latest/

λ=0.1 λ=0.3 λ=1.0 λ=1.5
0

2

4

6

8

10

12

14

16

18
Fl
ow

 C
om

pl
et
io
n
Ti
m
e

(a) Flow Completion

λ=0.1 λ=0.3 λ=1.0 λ=1.5
0

1

2

3

4

5

6

Av
g.
 W

or
kl
oa

d

(b) Work Load (Throughput)
Fig. 3: Shadow Price threshold (x-axis)

evaluation. For these experiments, we perform simulations on
a Rocketfuel topology with 27 hosts that send/receive flows
and 57 nodes that are capable of hosting NFIs. Unless stated
otherwise, the default parameters are: off-path penalty, ρ, is
0.3 and length of SFC is 2. We then apply the results of the
simulation study to setup the DRENCH prototype.

1) Off-path penalty, ρ: Traditionally, flows follow the short-
est path towards their destination, deviating only for traffic
engineering reasons and/or in response to link/node failures
(e.g., fast-reroute in MPLS). When it comes to service chain-
ing, flows deviate from their shortest path in order to be served
by NFIs. In DRENCH the off-path penalty factor, ρ, enables
the tradeoff between the shortest path deviation and FCT by
trading path deviation overhead for less congested NFIs as
Figs. 2 and 3 indicate. In more detail, the FCT increases as
the off-path penalty, ρ, increases since the flows prefer to get
served by a more congested NFI (e.g., with a higher service
cost) than deviating from their shortest path. Hence, for our
experimental purposes we choose a value of ρ in the range of
0.3-0.5. The exact setting of the ρ factor is up to the network
operator. During low-demand periods (e.g., during nighttime),
where links are generally less utilised, operators might choose
a lower value to improve FCT (i.e., given low link utilisation,
extra path deviation should not cause problems). On the other
hand, in high demand periods, path deviation should be kept to
lower levels, even if this increases the individual flows’ FCT,
in order to avoid extensive path stretch.

2) Shadow price Threshold: Fig. 3 shows the results of
varying the minimum shadow-price threshold, λ, at which
new instances are spawned. Fig. 3a shows that FCT increases
with increasing threshold values. A very low λ of 0.1 results
in lower FCT compared to values in the range 0.3 to 1.5,
but we can also observe that it results in a large number of
underutilized NFIs as seen in Fig. 3b. Utilisation is depicted
as the amount of traffic (in terms of throughput - see Fig. 3b)
that an NFI can serve. The exact setting of λ is up to the
network operator. If the demand is low, then more instances
can be allowed in order to result in lower FCTs, but larger
number of under-utilised instances. In contrast, during high
demand periods, the operator might have to compromise on
individual flow FCT, in order to make full utilisation of the
existing NFIs and eventually serve more flows overall.

B. Testbed: Simple controlled experiments
We perform controlled experiments on a small topology,

as shown in Fig. 4, in our CloudLab setup to illustrate the
benefits of DRENCH components. Consider flows Src1-Dst1,

Src1

Src2

S1 S2 S3
Dst1

Dst2

NF1=A NF3=B NF5=C

NF2=Free NF4=Free NF6=Free

Fig. 4: Simple Topology with initial placement of NFIs.

 0

 5

 10

 15

 20

 25

 30

 60 65 70 75 80 85 90 95 100 105 110
 0
 0.25
 0.5

 0.75
 1
 1.25
 1.5
 1.75
 2

 2.25
 2.5
 2.75
 3

N
e
tw

o
rk

 L
o
a
d
 i
n
 M

b
p
s

P
a
th

 D
e
v
ia

ti
o
n

Time in Seconds

Network Load (Baseline)
Network Load (DRENCH TCP)

Path Deviation (Baseline)
Path Deviation (DRENCH)

(a) Network Utilization

s1-1

s1-2

s2-1

s2-2

s3-1

s3-2

 60 65 70 75 80 85 90
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

S
e
rv

ic
e
 I
n
s
ta

n
c
e
 P

la
c
e
m

e
n
t

P
a
th

 d
e
v
ia

ti
o
n
,
#

 R
e
d
ir

e
c
ti

o
n
s

Time in Seconds

Network Function A
Network Function B
Network Function C
Avg. Path Deviation

Total # of Redirections

(b) NFI Relocation
Fig. 5: TCP flow with service chain of C—B—A

requiring the service chain of C/B/A, which also comprises
the ideal placement.

We study the performance and behavior of the system in
the worst case scenario, where the services are initially placed
in the reverse order as depicted in Fig. 4.8 To prevent an
increase in the flow’s path length (by going back and forth
in this topology), it is desirable to relocate the NFIs (from
A − B − C to C − B − A in nodes S1-S2-S3, respectively)
to minimize path stretch and FCT. In Fig. 5a, we observe

TABLE II: Avg. Bitrate and Delay

- DRENCH Baseline
Avg Bitrate (Mbps) 4.033227116 3.814941386
Avg Pkt Delay (ms) 18.982 23.207
Std. Dev of Pkt Delay (ms) 129.151 143.216

that, initially, due to the service instances being located in the
wrong order (i.e., A − B − C, instead of C − B − A) the
flow suffers higher path-stretch, resulting in additional delay
and higher network load. Later, as the switches gradually adapt
towards the ideal placement, path stretch declines and network
throughput increases (see Table II) compared to a non-reactive
(Baseline) approach.

When all the instances individually seek to be competitive
and maximise their utilisation, the switches with NFV
capacity near the ingress switches end up hosting most of
the services. From 5b, we see that DRENCH converges to
this ideal case by instantiating and placing the services in the
chain along the path towards the destination.

C. Large scale Evaluation: Data-Center Topology
We setup a Mininet Cluster on Cloudlab to study the

performance of DRENCH in a large network topology.
Topology: We use a 4K Fat-Tree topology to evaluate

DRENCH in a data-center environment and compare it to Slick
(used as an example of a centralized approach.) We consider
that only aggregation-layer switches in the fat-tree topology
have NFV capability and dedicate 2 cores per aggregate switch
for instantiating the NFIs.

8We set the NF capacity and the off-path penalty factors to just exceed the
threshold required in order to allow for service instantiation.

20 40 60 80

8

8.5

9

9.5

10

10.5

11

Network Load (%)

A
vg

.
FC

T
(s
) Slick(Y1)

Drench(Y1)
DwoR(Y1)

8

10

12

14

16

18

20

A
vg

.
D
el
ay

(m
s)

Slick(Y2)
Drench(Y2)
DwoR(Y2)

(a) Overall Avg. FCT and Delays

20 40 60 80
0

20

40

60

80

100

120

140

160

180

200

Network Load (%)

A
vg

.
In
st
an

ce
U
til
iz
at
io
n

Slick(Y1)
Drench(Y1)
DwoR(Y1)

4

6

8

10

12

14

16

18

20

To
ta
lA

ct
iv
e
N
FI
’s

Slick(Y2)
Drench(Y2)
DwoR(Y2)

(b) Avg. # of NFIs and an NFI’s Utilization

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90
0

20

40

60

80

100

Time in Seconds

Pa
th
-S
tr
et
ch

D
ev
ia
tio

n(
%
) Drench(Y1)

DwoR(Y1)
Slick(Y1)

0

5

10

15

20

25

30

35

40

45

50

#
R
ed
ire

ct
io
ns

Drench(Y2)

(c) Impact of redirection
Fig. 6: Study on a Data-Center Topology (Y1: Left Y axis, Y2: Right Y axis)

Workload: We model the traffic based on the available data
center workload characteristics similar to the ones used in [11],
[14]. The workload constitutes a mix of elephant flows (20%
with flow size > 10MB) and mice flows (80% with flow size <
2MB). Thus, elephant flows account for more than 80% of the
traffic bytes. We use iperf9 and D-ITG [23] to generate traffic
with varying network loads. Flows originate from one of the
servers connected to a leaf switch and terminate at another
server connected to another leaf switch (in either the same
or different pod). We use TCP flows in a client/server model
with random flow arrival times. Based on the information on
the service chaining policies in [24] and the details presented
in earlier work (e.g., [6]), we setup a service function chain
of 3 distinct Network Functions (NFs). We assume that there
are a total of 6 NFs available in the network and that each
flow requires exactly three of them. The service functions are
chosen based on a zipf-distribution with exponent set to 0.3.

Parameters: Based on our findings from Section VI-A2,
we set the parameter off-path penalty factor to 0.5,
and the instance shadow-price that influences service
consolidation and service instantiation decisions as follows.
An instance is consolidated when the shadow-price re-
flects NFI utilisation of < 30% and flows serviced by that
instance is < 5 flows. This is done in-order to mitigate the
number of flow re-directions and the packet re-ordering impact
of flow re-directions. A new NFI is instantiated when the
shadow-price reflects NFI utilisation of > 85%.

Comparison: In order to perform a fair comparison, we also
implemented a greedy heuristic-based flow steering approach
as in Slick [4] - as a representative of a fully centralized state-
of-the-art load balancing scheme 10. We also compare against
DwoR to study the effects of redirections and its impact on
DRENCH. Our main goal is to evaluate the behaviour and
performance of DRENCH wrt NFI placement, flow steering,
and load balancing in terms of its efficiency in NF resource
utilization and flow completion time (FCT).

Figure 6a shows the average FCT and packet delays for
different schemes. We can observe that at lower load (20-
40%) all the schemes have similar FCT, but DRENCH and
DwoR schemes incur relatively lower packet delays. At larger
network loads, DRENCH performs roughly 10∼20% better
than Slick and DwoR in terms of FCT. Furthermore, we also
observe that DwoR provides better FCT than the centralized

9https://iperf.fr/
10We implemented the shortest weighted path-based flow routing scheme

and not the entire Slick runtime [4]

DRENCH E2+S
0

2

4

6

8

10

P
a
t
h
 D
e
v
ia
t
io
n

(a) Path Deviation
DRENCH E2+S

0.0

0.5

1.0

1.5

2.0

A
v
g
.
W
o
r
k
lo
a
d

(b) NFI Work Load
DRENCH E2+S

0

50

100

150

200

250

300

F
lo
w
 C
o
m
p
le
t
io
n
 T
im

e

(c) FCT
Fig. 7: Comparison of Drench vs. E2+Simplefying

approach, while DRENCH outperforms both DwoR and Slick.
Finally, we also see that the average delay in the case of
DRENCH remains low in most cases and close to the other
solutions when the network load is extremely high (80%).

In Figure 6b, the average number of NFIs utilized for all
the schemes is almost the same However, DRENCH is able
to balance the load more efficiently since the variation in the
load among the NFIs and the NFI utilization is maintained at
the optimum.

In Figure 6c, we present the specific case for 80% network
load, where we observe that DRENCH is able to get close to
Slick, which is optimal terms of path-stretch deviation. We can
also observe the benefits of DRENCH redirections in order to
correct path-deviation during traffic bursts (see 70-80secs) and
also when a large number of flows terminate. In both cases
we can see that DRENCH is more effective than DwoR, in
terms of keeping path-stretch at a minimum, providing better
load-balancing across NFIs and achieving better FCT.
Note: In DRENCH re-directions enable to reroute flows
through lightly loaded links and NFIs, thus aid to lower packet
delays. However, the FCT may still get impacted due to interim
packet-reordering, which result in false congestion signals.
We believe that a modified TCP stack as in [25] could help
mitigate the packet-reordering issue.

D. Large scale Evaluation: ISP Topology
To further examine the capability of DRENCH to efficiently

use NFIs in a typical WAN ISP environment, we performed
simulations with SimPy.11

Experimental Setup: We performed simulations on the
Rocketfuel AS-1755 (Ebone in Europe) topology.12 In order to
perform a fair comparison, we implemented a greedy heuristic

11We plan to make our simulator code publicly available in order for other
members of the community to experiment and extend with the group of
algorithms and protocols discussed here.

12http://www.cs.washington.edu/research/projects/networking/www/
rocketfuel/interactive/1755eur.html

for flow steering which we call E2+Simplefying that uses
a combination of E2 [2] for service instantiation and service-
chain path definition, and Simplefying [6] for flow steering.
Note that in terms of performance, this combination of E2
and Simplefying performs much better than any of the E2
or Simplefying alone and therefore is the best choice for
comparison.

DRENCH vs. E2+Simplefying: Fig. 7 compares DRENCH
and E2+Simplefying (E2+S) approach. We observe that
DRENCH presents higher path deviation (see Fig. 7a) since it
deviates from the shortest path in search of a non-congested
NFI. In doing so, DRENCH is able to make better use of the
available NFI instances (see Fig. 7b) and performs instanti-
ation or consolidation when necessary. This way, DRENCH
ensures that all the available NFIs are running close to peak
utilisation (in terms of throughput served by the NFV nodes)
as seen in Fig. 7b. With these design choices, DRENCH
achieves significantly lower FCT (see Fig. 7c). In summary,
DRENCH provides up to 10× improvement in FCT and is able
to support roughly 4x times more workload, while incurring
an average path deviation penalty of up to 2x in comparison to
the E2+Simplefying approach. This extra path stretch though
is compensated in terms of optimal node utilisation and in
turn, very low FCT.

Summary of Evaluation: To summarize, our evaluation
demonstrates that with its hybrid centralised-decentralised
decision-making structure, DRENCH can optimally and dy-
namically load-balance traffic and allocate resources according
to demand. DRENCH makes informed decisions on the load
of NFIs and accordingly instantiates new or consolidates
existing NFIs. In turn, traffic is load-balanced (through flow
steering and redirection) to the appropriate instance achieving
significantly lower FCT.

VII. CONCLUSION

We have developed a hybrid centralized-distributed al-
gorithm framework for resource management and traffic
load-balancing among virtual NFIs that elegantly com-
bines distributed decision-making with centralized control
for orchestration and coordination, while performing com-
plex, dynamic service function chaining. DRENCH is de-
signed to dynamically adapt and balance resource availabil-
ity and traffic demand. It is based on a market-inspired,
competition-based shadow-price and accordingly takes
decisions on flow-steering, flow-redirection and service in-
stantiation/consolidation in a distributed manner. A centralized
SDN controller performs market orchestration, dissemination
of price information and coordination.

Our novel semi-distributed approach for dynamic
service instantiation and direction of new and existing flows
to the least loaded NFV node increases the throughput from
each NFV node and in turn reduces FCT significantly. With the
help of a prototype implementation on CloudLab and extensive
simulations, we illustrate the benefits of using DRENCH,
namely that traffic is dynamically load-balanced among in-
stances and the path deviation of flows across the NFIs is

kept to a minimum. Resources are efficiently utilized by timely
consolidation of NFIs when they are lightly loaded. Overall
DRENCH results in almost a 10× reduction in FCT in some
of our experiments.

REFERENCES

[1] C. Cui and et al., “Network Functions Virtualisation,” in SDN and
OpenFlow World Congress, 2012.

[2] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: A framework for nfv applications,” SOSP 2015.

[3] A. Gember and et al., “Stratos: A Network-Aware Orchestration Layer
for Virtual Middleboxes in Clouds,” Tech. Rep., 2013.

[4] B. Anwer, T. Benson, N. Feamster, and D. Levin, “Programming slick
network functions,” SOSR 2015.

[5] T. Wood, K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang, “Toward
a software-based network: integrating software defined networking and
network function virtualization,” IEEE Network 2015.

[6] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” in SIG-
COMM, 2013.

[7] A. Mohammadkhan and et al., “Virtual function placement and traffic
steering in flexible and dynamic software defined networks,” in IEEE
LANMAN 2015.

[8] Z. Cao, M. Kodialam, and T. V. Lakshman, “Traffic steering in software
defined networks,” DCC ‘14.

[9] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System Support for Elastic Execution in Virtual Middle-
boxes,” in NSDI 2013.

[10] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
responsive yet stable traffic engineering,” SIGCOMM 2005.

[11] M. Alizadeh and et al., “CONGA : Distributed Congestion-Aware Load
Balancing for Datacenters,” ACM SIGCOMM 2014.

[12] L. Guo, J. Pang, and A. Walid, “Dynamic service function chaining in
sdn-enabled networks with middleboxes,” in 2016 IEEE 24th Interna-
tional Conference on Network Protocols (ICNP), Nov 2016, pp. 1–10.

[13] A. Gember-Jacobson and et al., “Opennf: Enabling innovation in net-
work function control,” in ACM SIGCOMM 2014.

[14] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: Measurements & analysis,” in IMC 2009.

[15] H. Jiang and C. Dovrolis, “Why is the internet traffic bursty in short
time scales?” in SIGMETRICS 2005.

[16] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula:
Scalable load balancing using programmable data-planes,” SOSR 2016.

[17] F. P. Kelly, a. K. Maulloo, and D. K. H. Tan, “Rate control for commu-
nication networks: shadow prices, proportional fairness and stability,”
Operational Research Society, 1998.

[18] R. Cohen and G. Nakibli, “On the computational complexity and
effectiveness of “n-hub shortest-path routing”,” in INFOCOM 2004.

[19] M. Arumaithurai, J. Chen, E. Monticelli, X. Fu, and K. K. Ramakr-
ishnan, “Exploiting icn for flexible management of software-defined
networks,” in ACM ICN 2014.

[20] P. Quinn and U. Elzur, “Network Service Header,”
Internet Engineering Task Force, Internet-Draft draft-ietf-sfc-
nsh-10, Sep. 2016, work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-sfc-nsh-10

[21] W. Ding, W. Qi, J. Wang, and B. Chen, “Openscaas: an open service
chain as a service platform toward the integration of sdn and nfv,” IEEE
Network, vol. 29, no. 3, pp. 30–35, May 2015.

[22] N. Dukkipati and N. McKeown, “Why flow-completion time is the right
metric for congestion control,” SIGCOMM CCR, 2006.

[23] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, 2012.

[24] S.Kumar, M.tufail, S.Maji, C.captari, and S.Homma, “Service Function
Chaining Use Cases In Data Centers,” IETF draft, 2016. [Online].
Available: https://tools.ietf.org/html/draft-kumar-sfc-dc-use-cases-02

[25] K. He and et al., “Presto: Edge-based load balancing for fast datacenter
networks,” SIGCOMM CCR, vol. 45, no. 4, pp. 465–478, Aug. 2015.

