3,373 research outputs found

    Semiclassical quantization of multidimensional systems

    Get PDF
    Low order classical perturbation theory is used to obtain semiclassical eigenvalues for a system of three anharmonically coupled oscillators. The results in the low energy region studied here agree well with the "exact" quantum values. The latter had been calculated by matrix diagonalization using a large basis set

    Microstructural and strength stability of CVD SiC fibers in argon environment

    Get PDF
    The room temperature tensile strength and microstructure of three types of commercially available chemically vapor deposited silicon carbide fibers were measured after 1, 10, and 100 hour heat treatments under argon pressures of 0.1 to 310 MPa at temperatures to 2100 C. Two types of fiber had carbon-rich surface coatings and the other contained no coating. All three fiber types showed strength degradation beyond 1400 C. Time and temperature of exposure had greater influence on strength degradation than argon pressure. Recrystallization and growth of near stoichiometric SiC grains appears to be the dominant mechanism for the strength degradation

    The conditional tunneling time for reflection using the WKB wave-function

    Get PDF
    We derive an expression for the conditional time for the reflection of a wave from an arbitrary potential barrier using the WKB wavefunction in the barrier region. Our result indicates that the conditional times for transmission and reflection are equal for a symmetric barrier within the validity of the WKB approach.Comment: 4 pages RevTeX, 1 eps figure include

    Time for pulse traversal through slabs of dispersive and negative (ϵ\epsilon, μ\mu) materials

    Full text link
    The traversal times for an electromagnetic pulse traversing a slab of dispersive and dissipative material with negative dielectric permittivity (ϵ\epsilon) and magnetic permeability (μ\mu) have been calculated by using the average flow of electromagnetic energy in the medium. The effects of bandwidth of the pulse and dissipation in the medium have been investigated. While both large bandwidth and large dissipation have similar effects in smoothening out the resonant features that appear due to Fabry-P\'{e}rot resonances, large dissipation can result in very small or even negative traversal times near the resonant frequencies. We have also investigated the traversal times and Wigner delay times for obliquely incident pulses and evanescent pulses. The coupling to slab plasmon polariton modes in frequency ranges with negative ϵ\epsilon or μ\mu is shown to result in large traversal times at the resonant conditions. We also find that the group velocity mainly contributes to the delay times for pulse propagating across a slab with n=-1. We have checked that the traversal times are positive and subluminal for pulses with sufficiently large bandwidths.Comment: 9 pages, 9 figures, Submitted to Phys. Rev.

    Complete controllability of quantum systems

    Get PDF
    Sufficient conditions for complete controllability of NN-level quantum systems subject to a single control pulse that addresses multiple allowed transitions concurrently are established. The results are applied in particular to Morse and harmonic-oscillator systems, as well as some systems with degenerate energy levels. Morse and harmonic oscillators serve as models for molecular bonds, and the standard control approach of using a sequence of frequency-selective pulses to address a single transition at a time is either not applicable or only of limited utility for such systems.Comment: 8 pages, expanded and revised versio

    Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects

    Full text link
    Investigations of the magnetic properties of graphenes prepared by different methods reveal that dominant ferromagnetic interactions coexist along with antiferromagnetic interactions in all the samples. Thus, all the graphene samples exhibit room-temperature magnetic hysteresis. The magnetic properties depend on the number of layers and the sample area, small values of both favoring larger magnetization. Molecular charge-transfer affects the magnetic properties of graphene, interaction with a donor molecule such as tetrathiafulvalene having greater effect than an electron-withdrawing molecule such as tetracyanoethyleneComment: 16 pges, 5 figure

    Geonex: A NASA-NOAA Collaboration for Producing Land Surface Products from Geostationary Sensors Using Cloud Computing

    Get PDF
    The latest generation of geostationary satellites carry sensors such as the Advanced Baseline Imager (GOES-16/17) and the Advanced Himawari Imager (Himawari-8/9) that closely mimic the spatial and spectral characteristics of MODIS and VIIRS, useful for monitoring land surface conditions. The NASA Earth Exchange (NEX) team at Ames Research Center has embarked on a collaborative effort among scientists from NASA and NOAA exploring the feasibility of producing operational land surface products similar to those from MODIS/VIIRS. The team built a processing pipeline called GEONEX that is capable of converting raw geostationary data into routine products of Fires, surface reflectances, vegetation indices, LAI/FPAR, ET and GPP/NPP using algorithms adapted from both NASA/EOS and NOAA/GOES-R programs. The GEONEX pipeline has been deployed on Amazon Web Services cloud platform and it currently leverages near-realtime geostationary data hosted in AWS public datasets under a NOAA-AWS agreement.Initial analyses of various products from ABI/AHI sensors suggest that they are comparable to those from MODIS in representing the spatio-temporal dynamics of land conditions. Cloud computing offers a variety of options for deploying the GEONEX pipeline including choice CPUs, storage media, and automation. We estimate the cost of deploying GEONEX to be $400 - 750 a month for processing data (every 30 minutes) and producing products over the conterminous US. For products such as Fire, latency can be as little as 10 minutes from the time of data acquisition
    corecore