3,373 research outputs found
Semiclassical quantization of multidimensional systems
Low order classical perturbation theory is used to obtain semiclassical eigenvalues for a system of three anharmonically coupled oscillators. The results in the low energy region studied here agree well with the "exact" quantum values. The latter had been calculated by matrix diagonalization using a large basis set
Microstructural and strength stability of CVD SiC fibers in argon environment
The room temperature tensile strength and microstructure of three types of commercially available chemically vapor deposited silicon carbide fibers were measured after 1, 10, and 100 hour heat treatments under argon pressures of 0.1 to 310 MPa at temperatures to 2100 C. Two types of fiber had carbon-rich surface coatings and the other contained no coating. All three fiber types showed strength degradation beyond 1400 C. Time and temperature of exposure had greater influence on strength degradation than argon pressure. Recrystallization and growth of near stoichiometric SiC grains appears to be the dominant mechanism for the strength degradation
The conditional tunneling time for reflection using the WKB wave-function
We derive an expression for the conditional time for the reflection of a wave
from an arbitrary potential barrier using the WKB wavefunction in the barrier
region. Our result indicates that the conditional times for transmission and
reflection are equal for a symmetric barrier within the validity of the WKB
approach.Comment: 4 pages RevTeX, 1 eps figure include
Time for pulse traversal through slabs of dispersive and negative (, ) materials
The traversal times for an electromagnetic pulse traversing a slab of
dispersive and dissipative material with negative dielectric permittivity
() and magnetic permeability () have been calculated by using
the average flow of electromagnetic energy in the medium. The effects of
bandwidth of the pulse and dissipation in the medium have been investigated.
While both large bandwidth and large dissipation have similar effects in
smoothening out the resonant features that appear due to Fabry-P\'{e}rot
resonances, large dissipation can result in very small or even negative
traversal times near the resonant frequencies. We have also investigated the
traversal times and Wigner delay times for obliquely incident pulses and
evanescent pulses. The coupling to slab plasmon polariton modes in frequency
ranges with negative or is shown to result in large traversal
times at the resonant conditions. We also find that the group velocity mainly
contributes to the delay times for pulse propagating across a slab with n=-1.
We have checked that the traversal times are positive and subluminal for pulses
with sufficiently large bandwidths.Comment: 9 pages, 9 figures, Submitted to Phys. Rev.
Complete controllability of quantum systems
Sufficient conditions for complete controllability of -level quantum
systems subject to a single control pulse that addresses multiple allowed
transitions concurrently are established. The results are applied in particular
to Morse and harmonic-oscillator systems, as well as some systems with
degenerate energy levels. Morse and harmonic oscillators serve as models for
molecular bonds, and the standard control approach of using a sequence of
frequency-selective pulses to address a single transition at a time is either
not applicable or only of limited utility for such systems.Comment: 8 pages, expanded and revised versio
Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects
Investigations of the magnetic properties of graphenes prepared by different
methods reveal that dominant ferromagnetic interactions coexist along with
antiferromagnetic interactions in all the samples. Thus, all the graphene
samples exhibit room-temperature magnetic hysteresis. The magnetic properties
depend on the number of layers and the sample area, small values of both
favoring larger magnetization. Molecular charge-transfer affects the magnetic
properties of graphene, interaction with a donor molecule such as
tetrathiafulvalene having greater effect than an electron-withdrawing molecule
such as tetracyanoethyleneComment: 16 pges, 5 figure
Geonex: A NASA-NOAA Collaboration for Producing Land Surface Products from Geostationary Sensors Using Cloud Computing
The latest generation of geostationary satellites carry sensors such as the Advanced Baseline Imager (GOES-16/17) and the Advanced Himawari Imager (Himawari-8/9) that closely mimic the spatial and spectral characteristics of MODIS and VIIRS, useful for monitoring land surface conditions. The NASA Earth Exchange (NEX) team at Ames Research Center has embarked on a collaborative effort among scientists from NASA and NOAA exploring the feasibility of producing operational land surface products similar to those from MODIS/VIIRS. The team built a processing pipeline called GEONEX that is capable of converting raw geostationary data into routine products of Fires, surface reflectances, vegetation indices, LAI/FPAR, ET and GPP/NPP using algorithms adapted from both NASA/EOS and NOAA/GOES-R programs. The GEONEX pipeline has been deployed on Amazon Web Services cloud platform and it currently leverages near-realtime geostationary data hosted in AWS public datasets under a NOAA-AWS agreement.Initial analyses of various products from ABI/AHI sensors suggest that they are comparable to those from MODIS in representing the spatio-temporal dynamics of land conditions. Cloud computing offers a variety of options for deploying the GEONEX pipeline including choice CPUs, storage media, and automation. We estimate the cost of deploying GEONEX to be $400 - 750 a month for processing data (every 30 minutes) and producing products over the conterminous US. For products such as Fire, latency can be as little as 10 minutes from the time of data acquisition
- …