988 research outputs found

    Implementing Integrated STEM Forensic and Soil Sciences Lab Activities to Promote Interest in STEM Careers

    Get PDF
    We implemented forensic and soil science integrated STEM lab activities with 11 middle school youth at a 4-H day camp at Purdue University. STEM perceived knowledge increased overall for participants. However, the pre- and post-assessments did not show a statistically significant difference. More students also indicated STEM career interest after participating. Because this study was exploratory and had a small sample size, more research on these integrated STEM lab activities should be conducted with larger samples

    Ion Charge States in Halo CMEs: What can we Learn about the Explosion?

    Full text link
    We describe a new modeling approach to develop a more quantitative understanding of the charge state distributions of the ions of various elements detected in situ during halo Coronal Mass Ejection (CME) events by the Advanced Composition Explorer (ACE) satellite. Using a model CME hydrodynamic evolution based on observations of CMEs propagating in the plane of the sky and on theoretical models, we integrate time dependent equations for the ionization balance of various elements to compare with ACE data. We find that plasma in the CME ``core'' typically requires further heating following filament eruption, with thermal energy input similar to the kinetic energy input. This extra heating is presumably the result of post eruptive reconnection. Plasma corresponding to the CME ``cavity'' is usually not further ionized, since whether heated or not, the low density gives freeze-in close the the Sun. The current analysis is limited by ambiguities in the underlying model CME evolution. Such methods are likely to reach their full potential when applied to data to be acquired by STEREO when at optimum separation. CME evolution observed with one spacecraft may be used to interpret CME charge states detected by the other.Comment: 20 pages, accepted by Ap

    Topological Modes in Dual Lattice Models

    Get PDF
    Lattice gauge theory with gauge group ZPZ_{P} is reconsidered in four dimensions on a simplicial complex KK. One finds that the dual theory, formulated on the dual block complex K^\hat{K}, contains topological modes which are in correspondence with the cohomology group H2(K^,ZP)H^{2}(\hat{K},Z_{P}), in addition to the usual dynamical link variables. This is a general phenomenon in all models with single plaquette based actions; the action of the dual theory becomes twisted with a field representing the above cohomology class. A similar observation is made about the dual version of the three dimensional Ising model. The importance of distinct topological sectors is confirmed numerically in the two dimensional Ising model where they are parameterized by H1(K^,Z2)H^{1}(\hat{K},Z_{2}).Comment: 10 pages, DIAS 94-3

    Low-power, low-penalty, flip-chip integrated, 10Gb/s ring-based 1V CMOS photonics transmitter

    Get PDF
    Modulation with 7.5dB transmitter penalty is demonstrated from a novel 1.5Vpp differential CMOS driver flip-chip integrated with a Si ring modulator, consuming 350fJ/bit from a single 1V supply at bit rates up to 10Gb/s

    Low-voltage Ge avalanche photodetector for highly sensitive 10Gb/s Si photonic receivers

    Get PDF
    We demonstrate low-voltage germanium waveguide avalanche photodetectors (APD) with gain-bandwidth product of 88GHz. A 7.1dB sensitivity improvement is demonstrated for an APD wire-bonded to a 10Gb/s CMOS transimpedance amplifier, at -6.2V APD bias
    corecore