17 research outputs found

    Reflections and Considerations on Running Creative Visualization Learning Activities

    Full text link
    This paper draws together nine strategies for creative visualization activities. Teaching visualization often involves running learning activities where students perform tasks that directly support one or more topics that the teacher wishes to address in the lesson. As a group of educators and researchers in visualization, we reflect on our learning experiences. Our activities and experiences range from dividing the tasks into smaller parts, considering different learning materials, to encouraging debate. With this paper, our hope is that we can encourage, inspire, and guide other educators with visualization activities. Our reflections provide an initial starting point of methods and strategies to craft creative visualisation learning activities, and provide a foundation for developing best practices in visualization education.Comment: 8 pages, 3 figures. Accepted at 4th IEEE Workshop on Visualization Guidelines in Research, Design, and Education (VisGuides 2022), at IEEE VIS 202

    Reflections and Considerations on Running Creative Visualization Learning Activities

    Get PDF
    This paper draws together nine strategies for creative visualization activities. Teaching visualization often involves running learning activities where students perform tasks that directly support one or more topics that the teacher wishes to address in the lesson. As a group of educators and researchers in visualization, we reflect on our learning experiences. Our activities and experiences range from dividing the tasks into smaller parts, considering different learning materials, to encouraging debate. With this paper, our hope is that we can encourage, inspire, and guide other educators with visualization activities. Our reflections provide an initial starting point of methods and strategies to craft creative visualisation learning activities, and provide a foundation for developing best practices in visualization education

    Challenges and Opportunities in Data Visualization Education: A Call to Action

    Full text link
    This paper is a call to action for research and discussion on data visualization education. As visualization evolves and spreads through our professional and personal lives, we need to understand how to support and empower a broad and diverse community of learners in visualization. Data Visualization is a diverse and dynamic discipline that combines knowledge from different fields, is tailored to suit diverse audiences and contexts, and frequently incorporates tacit knowledge. This complex nature leads to a series of interrelated challenges for data visualization education. Driven by a lack of consolidated knowledge, overview, and orientation for visualization education, the 21 authors of this paper-educators and researchers in data visualization-identify and describe 19 challenges informed by our collective practical experience. We organize these challenges around seven themes People, Goals & Assessment, Environment, Motivation, Methods, Materials, and Change. Across these themes, we formulate 43 research questions to address these challenges. As part of our call to action, we then conclude with 5 cross-cutting opportunities and respective action items: embrace DIVERSITY+INCLUSION, build COMMUNITIES, conduct RESEARCH, act AGILE, and relish RESPONSIBILITY. We aim to inspire researchers, educators and learners to drive visualization education forward and discuss why, how, who and where we educate, as we learn to use visualization to address challenges across many scales and many domains in a rapidly changing world: viseducationchallenges.github.io.Comment: Accepted for publication at VIS 2023 Conference, Melbourne, VI

    Challenges and Opportunities in Data Visualization Education: A Call to Action

    Get PDF
    This paper is a call to action for research and discussion on data visualization education. As visualization evolves and spreads through our professional and personal lives, we need to understand how to support and empower a broad and diverse community of learners in visualization. Data Visualization is a diverse and dynamic discipline that combines knowledge from different fields, is tailored to suit diverse audiences and contexts, and frequently incorporates tacit knowledge. This complex nature leads to a series of interrelated challenges for data visualization education. Driven by a lack of consolidated knowledge, overview, and orientation for visualization education, the 21 authors of this paper—educators and researchers in data visualization—identify and describe 19 challenges informed by our collective practical experience. We organize these challenges around seven themes People, Goals & Assessment, Environment, Motivation, Methods, Materials , and Change . Across these themes, we formulate 43 research questions to address these challenges. As part of our call to action, we then conclude with 5 cross-cutting opportunities and respective action items: embrace DIVERSITY+INCLUSION, build COMMUNITIES, conduct RESEARCH, act AGILE, and relish RESPONSIBILITY. We aim to inspire researchers, educators and learners to drive visualization education forward and discuss why, how, who and where we educate, as we learn to use visualization to address challenges across many scales and many domains in a rapidly changing world: viseducationchallenges.github.io

    Development and Usability of a Feedback Tool, “My Personal Brain Health Dashboard”, to Improve Setting of Self-Management Goals Among People Living with HIV in Canada

    No full text
    This project explains the development of a personalized health outcome profile termed as “My Personal Brain Health Dashboard”. This feedback tool has been designed with the aim of improving self-management in people living with chronic conditions such as HIV. Interpretability and usefulness of the feedback tool for setting specific goals has also been pilot tested

    Goal Setting in HIV

    No full text
    Personalized outcome feedback is known to be needed for goal setting, a requirement for behavior change. This randomized trial aimes at estimating among people living with HIV, the extent that providing feedback on health outcomes, compared to no feedback, affects the number and specificity of self-management goals. Participants in a Canadian HIV brain health cohort study will be randomized to receive or not “My Personal Brain Health Dashboard” prior to a goal setting exercise. Self- defined goals in free text will be collected through an online platform. Text mining will be used to quantify goal specificity based on word matches with a goal-setting lexicon

    Mobile App Prototype in Older Adults for Postfracture Acute Pain Management: User-Centered Design Approach

    No full text
    BackgroundPostfracture acute pain is often inadequately managed in older adults. Mobile health (mHealth) technologies can offer opportunities for self-management of pain; however, insufficient apps exist for acute pain management after a fracture, and none are designed for an older adult population. ObjectiveThis study aims to design, develop, and evaluate an mHealth app prototype using a human-centered design approach to support older adults in the self-management of postfracture acute pain. MethodsThis study used a multidisciplinary and user-centered design approach. Overall, 7 stakeholders (ie, 1 clinician-researcher specialized in internal medicine, 2 user experience designers, 1 computer science researcher, 1 clinical research assistant researcher, and 2 pharmacists) from the project team, together with 355 external stakeholders, were involved throughout our user-centered development process that included surveys, requirement elicitation, participatory design workshops, mobile app design and development, mobile app content development, and usability testing. We completed this study in 3 phases. We analyzed data from prior surveys administered to 305 members of the Canadian Osteoporosis Patient Network and 34 health care professionals to identify requirements for designing a low-fidelity prototype. Next, we facilitated 4 participatory design workshops with 6 participants for feedback on content, presentation, and interaction with our proposed low-fidelity prototype. After analyzing the collected data using thematic analysis, we designed a medium-fidelity prototype. Finally, to evaluate our medium-fidelity prototype, we conducted usability tests with 10 participants. The results informed the design of our high-fidelity prototype. Throughout all the phases of this development study, we incorporated inputs from health professionals to ensure the accuracy and validity of the medical content in our prototypes. ResultsWe identified 3 categories of functionalities necessary to include in the design of our initial low-fidelity prototype: the need for support resources, diary entries, and access to educational materials. We then conducted a thematic analysis of the data collected in the design workshops, which revealed 4 themes: feedback on the user interface design and usability, requests for additional functionalities, feedback on medical guides and educational materials, and suggestions for additional medical content. On the basis of these results, we designed a medium-fidelity prototype. All the participants in the usability evaluation tests found the medium-fidelity prototype useful and easy to use. On the basis of the feedback and difficulties experienced by participants, we adjusted our design in preparation for the high-fidelity prototype. ConclusionsWe designed, developed, and evaluated an mHealth app to support older adults in the self-management of pain after a fracture. The participants found our proposed prototype useful for managing acute pain and easy to interact with and navigate. Assessment of the clinical outcomes and long-term effects of our proposed mHealth app will be evaluated in the future

    Réflexions et considérations sur l'exécution d'activités d'apprentissage de visualisation créative

    No full text
    International audienceThis paper draws together nine strategies for creative visualization activities. Teaching visualization often involves running learning activities where students perform tasks that directly support one or more topics that the teacher wishes to address in the lesson. As a group of educators and researchers in visualization, we reflect on our learning experiences. Our activities and experiences range from dividing the tasks into smaller parts, considering different learning materials, to encouraging debate. With this paper, our hope is that we can encourage, inspire, and guide other educators with visualization activities. Our reflections provide an initial starting point of methods and strategies to craft creative visualisation learning activities, and provide a foundation for developing best practices in visualization education
    corecore