17 research outputs found

    Plant-Derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) Exhibits Growth Inhibitory Effects in Prostate Cancer Cells

    Get PDF
    The gene Par-4 (Prostate Apoptosis Response 4) was originally identified in prostate cancer cells undergoing apoptosis and its product Par-4 showed cancer specific pro-apoptotic activity. Particularly, the SAC domain of Par-4 (SAC-Par-4) selectively kills cancer cells leaving normal cells unaffected. The therapeutic significance of bioactive SAC-Par-4 is enormous in cancer biology; however, its large scale production is still a matter of concern. Here we report the production of SAC-Par-4-GFP fusion protein coupled to translational enhancer sequence (5′ AMV) and apoplast signal peptide (aTP) in transgenic Nicotiana tabacum cv. Samsun NN plants under the control of a unique recombinant promoter M24. Transgene integration was confirmed by genomic DNA PCR, Southern and Northern blotting, Real-time PCR, and Nuclear run-on assays. Results of Western blot analysis and ELISA confirmed expression of recombinant SAC-Par-4-GFP protein and it was as high as 0.15% of total soluble protein. In addition, we found that targeting of plant recombinant SAC-Par-4-GFP to the apoplast and endoplasmic reticulum (ER) was essential for the stability of plant recombinant protein in comparison to the bacterial derived SAC-Par-4. Deglycosylation analysis demonstrated that ER-targeted SAC-Par-4-GFP-SEKDEL undergoes O-linked glycosylation unlike apoplast-targeted SAC-Par-4-GFP. Furthermore, various in vitro studies like mammalian cells proliferation assay (MTT), apoptosis induction assays, and NF-κB suppression suggested the cytotoxic and apoptotic properties of plant-derived SAC-Par-4-GFP against multiple prostate cancer cell lines. Additionally, pre-treatment of MAT-LyLu prostate cancer cells with purified SAC-Par-4-GFP significantly delayed the onset of tumor in a syngeneic rat prostate cancer model. Taken altogether, we proclaim that plant made SAC-Par-4 may become a useful alternate therapy for effectively alleviating cancer in the new era

    StickOn Adhesive Limited: A Strategic Pursuit in Challenging Environment

    No full text

    Immunomodulation in human and experimental uveitis: Recent advances

    No full text
    Experimental autoimmune uveitis (EAU) is a T-cell mediated autoimmune disease that targets the neural retina and serves as a model of human uveitis. EAU can be induced against several retinal proteins in rats, mice, and subhuman primates. These include the S-antigen, a major protein in retinal photoreceptor cells; interphotoreceptor retinoid-binding protein (IRBP); and rhodopsin and other antigens of retinal origin. There are many similarities between clinical uveitis and EAU, but the latter differs in being self-limited, and needs adjuvant for disease induction. The experimental disease can be induced only in susceptible animal strains. Use of the EAU model has helped investigators understand the pathophysiology of the disease and to evaluate disease-modifying strategies, which could be applied in the clinic. There has been significant progress in this field during last decade, but much more understanding is needed before the knowledge can be transferred to clinical practice. A deeper understanding of the immune mechanisms involved in the EAU model may lead to the development of new therapeutic approaches targeted at various components of the immune response by immunomodulation to control uveitis. This review summarises the evidence from the EAU model, which could be of relevance to the clinical management of patients with uveitis

    Evaluation of Different Medium for Producing on farm Arbuscular Mycorrhizal Inoculum International Journal of Agriculture, Environment & Biotechnology

    No full text
    Abstract Arbuscular mycorrhizal fungi (AMF) is a broad-spectrum non-specific organism known to colonize 85% of land plants hold considerable potential for use as inoculants. In the present perspective much attention is focussed on mass production of AMFinoculum, since this is of paramount importance in improving better uptake of nutrients, offers tolerance against a range of soil stresses, plant production and enhances the chances of plant survival. Given these benefits, utilization of the AMF symbiosis should be an important tool in sustainable agricultural systems. Producing AMF inoculum is a complex procedure involving selection of a host plant , finding the right mix or medium and the inoculums starter . Seven different substrates were tested for the production of AMF inoculum. Red earth in isolation or combination with solirite emerged as a suitable potential medium when compared to solirite for bulk production of pure, mature and infective AMF inoculum. Highlights • AMF are naturally-occurring soil fungi that form a symbiosis with the roots of most crop plants benefitting in terms of increased nutrient uptake and enhanced biotic and abiotic resistance. • Utilization of this symbiosis a potentially essential part of sustainable agriculture. • We developed an on farm method for farmers to produce inoculum of AMF which is effective, economical, and easy to use. • Red earth in isolation or combination with solirite emerged as a suitable potential medium for production of AMF

    Immunomodulation in human and experimental uveitis: recent advances

    No full text
    Experimental autoimmune uveitis (EAU) is a T-cell mediated autoimmune disease that targets the neural retina and serves as a model of human uveitis. EAU can be induced against several retinal proteins in rats, mice, and subhuman primates. These include the S-antigen, a major protein in retinal photoreceptor cells; interphotoreceptor retinoid-binding protein (IRBP); and rhodopsin and other antigens of retinal origin. There are many similarities between clinical uveitis and EAU, but the latter differs in being self-limited, and needs adjuvant for disease induction. The experimental disease can be induced only in susceptible animal strains. Use of the EAU model has helped investigators understand the pathophysiology of the disease and to evaluate disease-modifying strategies, which could be applied in the clinic. There has been significant progress in this field during last decade, but much more understanding is needed before the knowledge can be transferred to clinical practice. A deeper understanding of the immune mechanisms involved in the EAU model may lead to the development of new therapeutic approaches targeted at various components of the immune response by immunomodulation to control uveitis. This review summarises the evidence from the EAU model, which could be of relevance to the clinical management of patients with uveitis
    corecore