8 research outputs found
Widespread genomic influences on phenotype in Dravet syndrome, a âmonogenicâ condition
Dravet syndrome is an archetypal rare severe epilepsy, considered âmonogenicâ, typically caused by loss-of-function SCN1A variants. Despite a recognisable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia. Polygenic risk scores for intelligence are lower, and for longevity, higher, in Dravet syndrome than in epilepsy controls. The causal, major-effect, SCN1A variant may need to act against a broadly compromised genomic background to generate the full Dravet syndrome phenotype, whilst genomic resilience may help to ameliorate the risk of premature mortality in adult Dravet syndrome survivors
Recommended from our members
Use of whole genome sequencing to determine genetic basis of suspected mitochondrial disorders: cohort study
Funder: University of Cambridge; FundRef: http://dx.doi.org/10.13039/501100000735Funder: Alzheimer's Society; FundRef: http://dx.doi.org/10.13039/501100000320Funder: Leverhulme Trust; FundRef: http://dx.doi.org/10.13039/501100000275Funder: National Institute for Health Research; FundRef: http://dx.doi.org/10.13039/501100000272Funder: Department of Health; FundRef: http://dx.doi.org/10.13039/501100000276Funder: Evelyn Trust; FundRef: http://dx.doi.org/10.13039/501100004282Funder: Wellcome Trust; FundRef: http://dx.doi.org/10.13039/100004440Funder: Medical Research Council; FundRef: http://dx.doi.org/10.13039/501100000265Abstract: Objective: To determine whether whole genome sequencing can be used to define the molecular basis of suspected mitochondrial disease. Design: Cohort study. Setting: National Health Service, England, including secondary and tertiary care. Participants: 345 patients with suspected mitochondrial disorders recruited to the 100 000 Genomes Project in England between 2015 and 2018. Intervention: Short read whole genome sequencing was performed. Nuclear variants were prioritised on the basis of gene panels chosen according to phenotypes, ClinVar pathogenic/likely pathogenic variants, and the top 10 prioritised variants from Exomiser. Mitochondrial DNA variants were called using an in-house pipeline and compared with a list of pathogenic variants. Copy number variants and short tandem repeats for 13 neurological disorders were also analysed. American College of Medical Genetics guidelines were followed for classification of variants. Main outcome measure: Definite or probable genetic diagnosis. Results: A definite or probable genetic diagnosis was identified in 98/319 (31%) families, with an additional 6 (2%) possible diagnoses. Fourteen of the diagnoses (4% of the 319 families) explained only part of the clinical features. A total of 95 different genes were implicated. Of 104 families given a diagnosis, 39 (38%) had a mitochondrial diagnosis and 65 (63%) had a non-mitochondrial diagnosis. Conclusion: Whole genome sequencing is a useful diagnostic test in patients with suspected mitochondrial disorders, yielding a diagnosis in a further 31% after exclusion of common causes. Most diagnoses were non-mitochondrial disorders and included developmental disorders with intellectual disability, epileptic encephalopathies, other metabolic disorders, cardiomyopathies, and leukodystrophies. These would have been missed if a targeted approach was taken, and some have specific treatments
Recommended from our members
Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma
Funder: Galderma; doi: http://dx.doi.org/10.13039/501100009754Funder: NIHR-BRC Cambridge core grantFunder: National Institute for Health Research; doi: http://dx.doi.org/10.13039/501100000272Funder: NHS EnglandAbstract: T-cell non-Hodgkinâs lymphomas develop following transformation of tissue resident T-cells. We performed a meta-analysis of whole exome sequencing data from 403 patients with eight subtypes of T-cell non-Hodgkinâs lymphoma to identify mutational signatures and associated recurrent gene mutations. Signature 1, indicative of age-related deamination, was prevalent across all T-cell lymphomas, reflecting the derivation of these malignancies from memory T-cells. Adult T-cell leukemia-lymphoma was specifically associated with signature 17, which was found to correlate with the IRF4 K59R mutation that is exclusive to Adult T-cell leukemia-lymphoma. Signature 7, implicating UV exposure was uniquely identified in cutaneous T-cell lymphoma (CTCL), contributing 52% of the mutational burden in mycosis fungoides and 23% in Sezary syndrome. Importantly this UV signature was observed in CD4 + T-cells isolated from the blood of Sezary syndrome patients suggesting extensive re-circulation of these T-cells through skin and blood. Analysis of non-Hodgkinâs T-cell lymphoma cases submitted to the national 100,000 WGS project confirmed that signature 7 was only identified in CTCL strongly implicating UV radiation in the pathogenesis of cutaneous T-cell lymphoma
Genomic profiling reveals spatial intra-tumor heterogeneity in follicular lymphoma (vol 32, pg 1258, 2018)
International audienc
Whole genome sequencing for the diagnosis of neurological repeat expansion disorders in the UK: a retrospective diagnostic accuracy and prospective clinical validation study
Background: repeat expansion disorders affect about 1 in 3000 individuals and are clinically heterogeneous diseases caused by expansions of short tandem DNA repeats. Genetic testing is often locus-specific, resulting in underdiagnosis of people who have atypical clinical presentations, especially in paediatric patients without a previous positive family history. Whole genome sequencing is increasingly used as a first-line test for other rare genetic disorders, and we aimed to assess its performance in the diagnosis of patients with neurological repeat expansion disorders. Methods: we retrospectively assessed the diagnostic accuracy of whole genome sequencing to detect the most common repeat expansion loci associated with neurological outcomes (AR, ATN1, ATXN1, ATXN2, ATXN3, ATXN7, C9orf72, CACNA1A, DMPK, FMR1, FXN, HTT, and TBP) using samples obtained within the National Health Service in England from patients who were suspected of having neurological disorders; previous PCR test results were used as the reference standard. The clinical accuracy of whole genome sequencing to detect repeat expansions was prospectively examined in previously genetically tested and undiagnosed patients recruited in 2013â17 to the 100 000 Genomes Project in the UK, who were suspected of having a genetic neurological disorder (familial or early-onset forms of ataxia, neuropathy, spastic paraplegia, dementia, motor neuron disease, parkinsonian movement disorders, intellectual disability, or neuromuscular disorders). If a repeat expansion call was made using whole genome sequencing, PCR was used to confirm the result. Findings: the diagnostic accuracy of whole genome sequencing to detect repeat expansions was evaluated against 793 PCR tests previously performed within the NHS from 404 patients. Whole genome sequencing correctly classified 215 of 221 expanded alleles and 1316 of 1321 non-expanded alleles, showing 97·3% sensitivity (95% CI 94·2â99·0) and 99·6% specificity (99·1â99·9) across the 13 disease-associated loci when compared with PCR test results. In samples from 11 631 patients in the 100 000 Genomes Project, whole genome sequencing identified 81 repeat expansions, which were also tested by PCR: 68 were confirmed as repeat expansions in the full pathogenic range, 11 were non-pathogenic intermediate expansions or premutations, and two were non-expanded repeats (16% false discovery rate). Interpretation: In our study, whole genome sequencing for the detection of repeat expansions showed high sensitivity and specificity, and it led to identification of neurological repeat expansion disorders in previously undiagnosed patients. These findings support implementation of whole genome sequencing in clinical laboratories for diagnosis of patients who have a neurological presentation consistent with a repeat expansion disorder. Funding: Medical Research Council, Department of Health and Social Care, National Health Service England, National Institute for Health Research, and Illumina.</p