2 research outputs found

    Towards a Universal Hot Carrier Degradation Model for SiGe HBTs Subjected to Electrical Stress

    Get PDF
    The objective of this work is to develop a generalizable understanding of the degradation mechanisms present in complementary Silicon-Germanium (SiGe) heterojunction bipolar transistors (HBTs) that can be used to not only predict the reliable lifetime of these devices but also overcome some of these aging limitations using clever device engineering. This broad motivation for understanding and improving SiGe HBT device reliability is explored through the following specific goals: 1) develop an understanding of the dominant hot carrier degradation sources across temperature (25 K – 573 K); 2) develop a broad understanding of all potentially vulnerable regions of damage within a SiGe HBT using electrically measured data, and how these degradations can be captured in a modeling framework; and 3) design optimized SiGe HBTs that can potentially overcome some of these device-level limitations in reliability across temperature. Being able to simulate the electrical degradation of a complex circuit with SiGe HBTs swinging dynamically on the output plane using a universal physics-based aging model is invaluable for any circuit designer optimizing for high performance and reliability.Ph.D

    TCAD modeling of mixed-mode degradation in SiGe HBTs

    Get PDF
    The objective of this work is to develop an effective TCAD based hot-carrier degradation model in predicting the damage that a SiGe HBT undergoes as it is stressed across bias, time and temperature.M.S
    corecore