2,133 research outputs found

    Repairing Old Bridges

    Get PDF

    Suppression of electron scattering resonances in graphene by quantum dots

    Full text link
    Transmission of low-energetic electrons through two-dimensional materials leads to unique scattering resonances. These resonances contribute to photoemission from occupied bands where they appear as strongly dispersive features of suppressed photoelectron intensity. Using angle-resolved photoemission we have systematically studied scattering resonances in epitaxial graphene grown on the chemically differing substrates Ir(111), Bi/Ir, Ni(111) as well as in graphene/Ir(111) nanopatterned with a superlattice of uniform Ir quantum dots. While the strength of the chemical interaction with the substrate has almost no effect on the dispersion of the scattering resonances, their energy can be controlled by the magnitude of charge transfer from/to graphene. At the same time, a superlattice of small quantum dots deposited on graphene eliminates the resonances completely. We ascribe this effect to a nanodot-induced buckling of graphene and its local rehybridization from sp2^{2} to sp3^{3} towards a three-dimensional structure. Our results suggest nanopatterning as a prospective tool for tuning optoelectronic properties of two-dimensional materials with graphene-like structure.Comment: The following article has been submitted to Applied Physics Letters. If it is published, it will be found online at http://apl.aip.or

    Rashba splitting of 100 meV in Au-intercalated graphene on SiC

    Full text link
    Intercalation of Au can produce giant Rashba-type spin-orbit splittings in graphene but this has not yet been achieved on a semiconductor substrate. For graphene/SiC(0001), Au intercalation yields two phases with different doping. Here, we report the preparation of an almost pure p-type graphene phase after Au intercalation. We observe a 100 meV Rashba-type spin-orbit splitting at 0.9 eV binding energy. We show that this giant splitting is due to hybridization and much more limited in energy and momentum space than for Au-intercalated graphene on Ni

    Exploratory studies of contact angle hysteresis, wetting of solidified rare gases and surface properties of mercury Final report

    Get PDF
    Contact angle hysteresis, wetting of solidified rare gases, and surface properties of mercur

    Laser-induced persistent photovoltage on the surface of a ternary topological insulator at room temperature

    Full text link
    Using time- and angle-resolved photoemission, we investigate the ultrafast response of excited electrons in the ternary topological insulator (Bi1x_{1 x}Sbx_{x})2_2Te3_3 to fs-infrared pulses. We demonstrate that at the critical concentration xx=0.55, where the system becomes bulk insulating, a surface voltage can be driven at room temperature through the topological surface state solely by optical means. We further show that such a photovoltage persists over a time scale that exceeds ∼\sim6 μ\mus, i.e, much longer than the characteristic relaxation times of bulk states. We attribute the origin of the photovoltage to a laser-induced band-bending effect which emerges near the surface region on ultrafast time scales. The photovoltage is also accompanied by a remarkable increase in the relaxation times of excited states as compared to undoped topological insulators. Our findings are relevant in the context of applications of topological surface states in future optical devices.Comment: 5 pages, 4 figure

    Ultrafast spin polarization control of Dirac fermions in topological insulators

    Full text link
    Three-dimensional topological insulators (TIs) are characterized by spin-polarized Dirac-cone surface states that are protected from backscattering by time-reversal symmetry. Control of the spin polarization of topological surface states (TSSs) using femtosecond light pulses opens novel perspectives for the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Using time-, spin-, and angle-resolved spectroscopy, we directly monitor for the first time the ultrafast response of the spin polarization of photoexcited TSSs to circularly-polarized femtosecond pulses of infrared light. We achieve all-optical switching of the transient out-of-plane spin polarization, which relaxes in about 1.2 ps. Our observations establish the feasibility of ultrafast optical control of spin-polarized Dirac fermions in TIs and pave the way for novel optospintronic applications at ultimate speeds.Comment: 9 pages, 4 figure

    Mn valence instability in La2/3Ca1/3MnO3 thin films

    Full text link
    A Mn valence instability on La2/3Ca1/3MnO3 thin films, grown on LaAlO3 (001)substrates is observed by x-ray absorption spectroscopy at the Mn L-edge and O K-edge. As-grown samples, in situ annealed at 800 C in oxygen, exhibit a Curie temperature well below that of the bulk material. Upon air exposure a reduction of the saturation magnetization, MS, of the films is detected. Simultaneously a Mn2+ spectral signature develops, in addition to the expected Mn3+ and Mn4+ contributions, which increases with time. The similarity of the spectral results obtained by total electron yield and fluorescence yield spectroscopy indicates that the location of the Mn valence anomalies is not confined to a narrow surface region of the film, but can extend throughout the whole thickness of the sample. High temperature annealing at 1000 C in air, immediately after growth, improves the magnetic and transport properties of such films towards the bulk values and the Mn2+ signature in the spectra does not appear. The Mn valence is then stable even to prolonged air exposure. We propose a mechanism for the Mn2+ ions formation and discuss the importance of these observations with respect to previous findings and production of thin films devices.Comment: Double space, 21 pages, 6 figure

    Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt

    Get PDF
    We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by means of spin and angle-resolved photoemission spectroscopy. The experimental spectra are compared in detail to state-of-the-art many-body calculations within the dynamical mean field theory and the three-body scattering approximation, including a full calculation of the one-step photoemission process. From this comparison we conclude that although strong local many-body Coulomb interactions are of major importance for the qualitative description of correlation effects in Co, more sophisticated many-body calculations are needed in order to improve the quantitative agreement between theory and experiment, in particular concerning the linewidths. The quality of the overall agreement obtained for Co indicates that the effect of non-local correlations becomes weaker with increasing atomic number
    • …
    corecore