1,157 research outputs found

    Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2

    Full text link
    We investigate polarization memory effects in single-crystal CuFeO2, which has a magnetically-induced ferroelectric phase at low temperatures and applied B fields between 7.5 and 13 T. Following electrical poling of the ferroelectric phase, we find that the nonpolar collinear antiferromagnetic ground state at B = 0 T retains a strong memory of the polarization magnitude and direction, such that upon re-entering the ferroelectric phase a net polarization of comparable magnitude to the initial polarization is recovered in the absence of external bias. This memory effect is very robust: in pulsed-magnetic-field measurements, several pulses into the ferroelectric phase with reverse bias are required to switch the polarization direction, with significant switching only seen after the system is driven out of the ferroelectric phase and ground state either magnetically (by application of B > 13 T) or thermally. The memory effect is also largely insensitive to the magnetoelastic domain composition, since no change in the memory effect is observed for a sample driven into a single-domain state by application of stress in the [1-10] direction. On the basis of Monte Carlo simulations of the ground state spin configurations, we propose that the memory effect is due to the existence of helical domain walls within the nonpolar collinear antiferromagnetic ground state, which would retain the helicity of the polar phase for certain magnetothermal histories.Comment: 9 pages, 7 figure

    Universal magneto-orbital ordering in the divalent AA-site quadruple perovskite manganites AAMn7_7O12_{12} (AA = Ca, Sr, Cd, and Pb)

    Full text link
    Through analysis of variable temperature neutron powder diffraction data, we present solutions for the magnetic structures of SrMn7_7O12_{12}, CdMn7_7O12_{12}, and PbMn7_7O12_{12} in all long-range ordered phases. The three compounds were found to have magnetic structures analogous to that reported for CaMn7_7O12_{12}. They all feature a higher temperature lock-in phase with \emph{commensurate} magneto-orbital coupling, and a delocked, multi-\textbf{k} magnetic ground state where \emph{incommensurate} magneto-orbital coupling gives rise to a constant-moment magnetic helix with modulated spin helicity. CdMn7_7O12_{12} represents a special case in which the orbital modulation is commensurate with the crystal lattice and involves stacking of fully and partially polarized orbital states. Our results provide a robust confirmation of the phenomenological model for magneto-orbital coupling previously presented for CaMn7_7O12_{12}. Furthermore, we show that the model is universal to the A2+A^{2+} quadruple perovskite manganites synthesised to date, and that it is tunable by selection of the AA-site ionic radius

    First-principles study of multiferroic RbFe(MoO4_4)2_2

    Full text link
    We have investigated the magnetic structure and ferroelectricity in RbFe(MoO4_4)2_2 via first-principles calculations. Phenomenological analyses have shown that ferroelectricity may arise due to both the triangular chirality of the magnetic structure, and through coupling between the magnetic helicity and the ferroaxial structural distortion. Indeed, it was recently proposed that the structural distortion plays a key role in stabilising the chiral magnetic structure itself. We have determined the relative contribution of the two mechanisms via \emph{ab-initio} calculations. Whilst the structural axiality does induce the magnetic helix by modulating the symmetric exchange interactions, the electric polarization is largely due to the in-plane spin triangular chirality, with both electronic and ionic contributions being of relativistic origin. At the microscopic level, we interpret the polarization as a secondary steric consequence of the inverse Dzyaloshinskii-Moriya mechanism and accordingly explain why the ferroaxial component of the electric polarization must be small

    Magnetoelectric domains and their switching mechanism in a Y-type hexaferrite

    Full text link
    By employing resonant X-ray microdiffraction, we image the magnetisation and magnetic polarity domains of the Y-type hexaferrite Ba0.5_{0.5}Sr1.5_{1.5}Mg2_2Fe12_{12}O22_{22}. We show that the magnetic polarity domain structure can be controlled by both magnetic and electric fields, and that full inversion of these domains can be achieved simply by reversal of an applied magnetic field in the absence of an electric field bias. Furthermore, we demonstrate that the diffraction intensity measured in different X-ray polarisation channels cannot be reproduced by the accepted model for the polar magnetic structure, known as the 2-fan transverse conical (TC) model. We propose a modification to this model, which achieves good quantitative agreement with all of our data. We show that the deviations from the TC model are large, and may be the result of an internal magnetic chirality, most likely inherited from the parent helical (non-polar) phase.Comment: 9 figure

    Electrical switching of magnetic polarity in a multiferroic BiFeO3 device at room temperature

    Full text link
    We have directly imaged reversible electrical switching of the cycloidal rotation direction (magnetic polarity) in a (111)-BiFeO3 epitaxial-film device at room temperature by non-resonant x-ray magnetic scattering. Consistent with previous reports, fully relaxed (111)-BiFeO3 epitaxial films consisting of a single ferroelectric domain were found to comprise a sub-micron-scale mosaic of magneto-elastic domains, all sharing a common direction of the magnetic polarity, which was found to switch reversibly upon reversal of the ferroelectric polarization without any measurable change of the magneto-elastic domain population. A real-space polarimetry map of our device clearly distinguished between regions of the sample electrically addressed into the two magnetic states with a resolution of a few tens of micron. Contrary to the general belief that the magneto-electric coupling in BiFeO3 is weak, we find that electrical switching has a dramatic effect on the magnetic structure, with the magnetic moments rotating on average by 90 degrees at every cycle.Comment: 6 pages, 5 figures; corrected figure

    Electric field control of the magnetic chiralities in ferroaxial multiferroic RbFe(MoO4)2

    Full text link
    The coupling of magnetic chiralities to the ferroelectric polarisation in multiferroic RbFe(MoO4_4)2_2 is investigated by neutron spherical polarimetry. Because of the axiality of the crystal structure below TcT_\textrm{c} = 190 K, helicity and triangular chirality are symmetric-exchange coupled, explaining the onset of the ferroelectricity in this proper-screw magnetic structure - a mechanism that can be generalised to other systems with "ferroaxial" distortions in the crystal structure. With an applied electric field we demonstrate control of the chiralities in both structural domains simultaneously.Comment: 5 pages, 4 figure

    Direct observation of charge order in triangular metallic AgNiO2 by single-crystal resonant X-ray scattering

    Full text link
    We report resonant X-ray scattering measurements on the orbitally-degenerate triangular metallic antiferromagnet 2H-AgNiO2 to probe the spontaneous transition to a triple-cell superstructure at temperatures below 365 K. We observe a strong resonant enhancement of the supercell reflections through the Ni K-edge. The empirically extracted K-edge shift between the crystallographically-distinct Ni sites of 2.5(3) eV is much larger than the value expected from the shift in final states, and implies a core-level shift of ~1 eV, thus providing direct evidence for the onset of spontaneous honeycomb charge order in the triangular Ni layers. We also provide band-structure calculations that explain quantitatively the observed edge shifts in terms of changes in the Ni electronic energy levels due to charge order and hybridization with the surrounding oxygens.Comment: 5 pages, 4 figure

    Immunohistochemical localization of constitutive and inducible heat shock protein 70 in carp (Cyprinus carpio) and trout (Oncorhynchus mykiss) exposed to transport stress.

    Get PDF
    In the present work we investigated by immunohistochemistry the cellular localization of constitutive as well as inducible heat shock protein 70 in several tissues of common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) exposed to transport stress. In carp, the constitutive form (HSC70) was detected only in red skeletal muscle of both control and stressed animals. In the same species, the inducible form (HSP70) was evident in the epithelia of renal tubules, gills and skin of stressed animals, whereas in controls only red skeletal muscle exhibited an immunopositivity to HSP70 antibody. In trout, immunostaining to HSC70 antibody was found mainly in the epithelia of intestine, gills and skin of both control and stressed animals although the reactivity was generally higher in animals exposed to transport stress. In the same species immunostaining to HSP70 antibody was observed only in red skeletal muscle and epidermis of control animals

    The structure of intercalated water in superconducting Na0.35_{0.35}CoO2_{2}\cdot1.37D2_{2}O: Implications for the superconducting phase diagram

    Full text link
    We have used electron and neutron powder diffraction to elucidate the structural properties of superconducting \NaD. Our measurements show that our superconducting sample exhbits a number of supercells ranging from 1/3a{1/3}a^{*} to 1/15a{1/15}a^{*}, but the most predominant one, observed also in the neutron data, is a double hexagonal cell with dimensions \dhx. Rietveld analysis reveals that \deut\space is inserted between CoO2_{2} sheets as to form a layered network of NaO6_{6} triangular prisms. Our model removes the need to invoke a 5K superconducting point compound and suggests that a solid solution of Na is possible within a constant amount of water yy.Comment: 4 pages, 3 figure
    corecore