11 research outputs found

    A novel allele of FILAMENTOUS FLOWER reveals new insights on the link between inflorescence and floral meristem organization and flower morphogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Arabidopsis </it><it>FILAMENTOUS FLOWER (FIL) </it>gene encodes a YABBY (YAB) family putative transcription factor that has been implicated in specifying abaxial cell identities and thus regulating organ polarity of lateral organs. In contrast to double mutants of <it>fil </it>and other <it>YAB </it>genes, <it>fil </it>single mutants display mainly floral and inflorescence morphological defects that do not reflect merely a loss of abaxial identity. Recently, <it>FIL </it>and other <it>YABs </it>have been shown to regulate meristem organization in a non-cell-autonomous manner. In a screen for new mutations affecting floral organ morphology and development, we have identified a novel allele of FIL, <it>fil-9 </it>and characterized its floral and meristem phenotypes.</p> <p>Results</p> <p>The <it>fil-9 </it>mutation results in highly variable disruptions in floral organ numbers and size, partial homeotic transformations, and in defective inflorescence organization. Examination of meristems indicates that both <it>fil-9 </it>inflorescence and floral meristems are enlarged as a result of an increase in cell number, and deformed. Furthermore, primordia emergence from these meristems is disrupted such that several primordia arise simultaneously instead of sequentially. Many of the organs produced by the inflorescence meristems are filamentous, yet they are not considered by the plant as flowers. The severity of both floral organs and meristem phenotypes is increased acropetally and in higher growth temperature.</p> <p>Conclusions</p> <p>Detailed analysis following the development of <it>fil-9 </it>inflorescence and flowers throughout flower development enabled the drawing of a causal link between multiple traits of <it>fil-9 </it>phenotypes. The study reinforces the suggested role of <it>FIL </it>in meristem organization. The loss of spatial and temporal organization of <it>fil-9 </it>inflorescence and floral meristems presumably leads to disrupted cell allocation to developing floral organs and to a blurring of organ whorl boundaries. This disruption is reflected in morphological and organ identity aberrations of <it>fil-9 </it>floral organs and in the production of filamentous organs that are not perceived as flowers. Here, we show the role of <it>FIL </it>in reproductive meristem development and emphasize the potential of using <it>fil </it>mutants to study mersitem organization and the related effects on flower morphogenesis.</p

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Studying Vegetation Salinity: From the Field View to a Satellite-Based Perspective

    No full text
    Salinization of irrigated lands in the semi-arid Jezreel Valley, Northern Israel results in soil-structure deterioration and crop damage. We formulated a generic rule for estimating salinity of different vegetation types by studying the relationship between Cl/Na and different spectral slopes in the visible–near infrared–shortwave infrared (VIS–NIR–SWIR) spectral range using both field measurements and satellite imagery (Sentinel-2). For the field study, the slope-based model was integrated with conventional partial least squares (PLS) analyses. Differences in 14 spectral ranges, indicating changes in salinity levels, were identified across the VIS–NIR–SWIR region (350–2500 nm). Next, two different models were run using PLS regression: (i) using spectral slope data across these ranges; and (ii) using preprocessed spectral reflectance. The best model for predicting Cl content was based on continuum removal reflectance (R2 = 0.84). Satisfactory correlations were obtained using the slope-based PLS model (R2 = 0.77 for Cl and R2 = 0.63 for Na). Thus, salinity contents in fresh plants could be estimated, despite masking of some spectral regions by water absorbance. Finally, we estimated the most sensitive spectral channels for monitoring vegetation salinity from a satellite perspective. We evaluated the recently available Sentinel-2 imagery’s ability to distinguish variability in vegetation salinity levels. The best estimate of a Sentinel-2-based vegetation salinity index was generated based on a ratio between calculated slopes: the 490–665 nm and 705–1610 nm. This index was denoted as the Sentinel-2-based vegetation salinity index (SVSI) (band 4 − band 2)/(band 5 + band 11)

    Spectral Slope as an Indicator of Pasture Quality

    No full text
    In this study, we develop a spectral method for assessment of pasture quality based only on the spectral information obtained with a small number of wavelengths. First, differences in spectral behavior were identified across the near infrared–shortwave infrared spectral range that were indicative of changes in chemical properties. Then, slopes across different spectral ranges were calculated and correlated with the changes in crude protein (CP), neutral detergent fiber (NDF) and metabolic energy concentration (MEC). Finally, partial least squares (PLS) regression analysis was applied to identify the optimal spectral ranges for accurate assessment of CP, NDF and MEC. Six spectral domains and a set of slope criteria for real-time evaluation of pasture quality were suggested. The evaluation of three level categories (low, medium, high) for these three parameters showed a success rate of: 73%–96% for CP, 72%–87% for NDF and 60%–85% for MEC. Moreover, only one spectral range, 1748–1764 nm, was needed to provide a good estimation of CP, NDF and MEC. Importantly, five of the six selected spectral regions were not affected by water absorbance. With some modifications, this rationale can be applied to further analyses of pasture quality from airborne sensors

    Estimating Pasture Quality of Fresh Vegetation Based on Spectral Slope of Mixed Data of Dry and Fresh Vegetation—Method Development

    No full text
    The main objective of the present study was to apply a slope-based spectral method to both dry and fresh pasture vegetation. Differences in eight spectral ranges were identified across the near infrared-shortwave infrared (NIR-SWIR) that were indicative of changes in chemical properties. Slopes across these ranges were calculated and a partial least squares (PLS) analytical model was constructed for the slopes vs. crude protein (CP) and neutral detergent fiber (NDF) contents. Different datasets with different numbers of fresh/dry samples were constructed to predict CP and NDF contents. When using a mixed-sample dataset with dry-to-fresh ratios of 85%:15% and 75%:25%, the correlations of CP (R2 = 0.95, in both) and NDF (R2 = 0.84 and 0.82, respectively) were almost as high as when using only dry samples (0.97 and 0.85, respectively). Furthermore, satisfactory correlations were obtained with a dry-to-fresh ratio of 50%:50% for CP (R2 = 0.92). The results of our study are especially encouraging because CP and NDF contents could be predicted even though some of the selected spectral regions were directly affected by atmospheric water vapor or water in the plants

    Spatial and Temporal Monitoring of Pasture Ecological Quality: Sentinel-2-Based Estimation of Crude Protein and Neutral Detergent Fiber Contents

    No full text
    Frequent, region-wide monitoring of changes in pasture quality due to human disturbances or climatic conditions is impossible by field measurements or traditional ecological surveying methods. Remote sensing imagery offers distinctive advantages for monitoring spatial and temporal patterns. The chemical parameters that are widely used as indicators of ecological quality are crude protein (CP) content and neutral detergent fiber (NDF) content. In this study, we investigated the relationship between CP, NDF, and reflectance in the visible&#8211;near-infrared&#8211;shortwave infrared (VIS&#8211;NIR&#8211;SWIR) spectral range, using field, laboratory measurements, and satellite imagery (Sentinel-2). Statistical models were developed using different calibration and validation data sample sets: (1) a mix of laboratory and field measurements (e.g., fresh and dry vegetation) and (2) random selection. In addition, we used three vegetation indices (Normalized Difference Vegetative Index (NDVI), Soil-adjusted Vegetation Index (SAVI) and Wide Dynamic Range Vegetation Index (WDRVI)) as proxies to CP and NDF estimation. The best models found for predicting CP and NDF contents were based on reflectance measurements (R2 = 0.71, RMSEP = 2.1% for CP; and R2 = 0.78, RMSEP = 5.5% for NDF). These models contained fresh and dry vegetation samples in calibration and validation data sets. Random sample selection in a model generated similar accuracy estimations. Our results also indicate that vegetation indices provide poor accuracy. Eight Sentinel-2 images (December 2015&#8211;April 2017) were examined in order to better understand the variability of vegetation quality over spatial and temporal scales. The spatial and temporal patterns of CP and NDF contents exhibit strong seasonal dependence, influenced by climatological (precipitation) and topographical (northern vs. southern hillslopes) conditions. The total CP/NDF content increases/decrease (respectively) from December to March, when the concentrations reach their maximum/minimum values, followed by a decline/incline that begins in April, reaching minimum values in July

    Reduction of cardiac imaging tests during the COVID-19 pandemic: The case of Italy. Findings from the IAEA Non-invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)

    No full text
    Background: In early 2020, COVID-19 massively hit Italy, earlier and harder than any other European country. This caused a series of strict containment measures, aimed at blocking the spread of the pandemic. Healthcare delivery was also affected when resources were diverted towards care of COVID-19 patients, including intensive care wards. Aim of the study: The aim is assessing the impact of COVID-19 on cardiac imaging in Italy, compare to the Rest of Europe (RoE) and the World (RoW). Methods: A global survey was conducted in May–June 2020 worldwide, through a questionnaire distributed online. The survey covered three periods: March and April 2020, and March 2019. Data from 52 Italian centres, a subset of the 909 participating centres from 108 countries, were analyzed. Results: In Italy, volumes decreased by 67% in March 2020, compared to March 2019, as opposed to a significantly lower decrease (p &lt; 0.001) in RoE and RoW (41% and 40%, respectively). A further decrease from March 2020 to April 2020 summed up to 76% for the North, 77% for the Centre and 86% for the South. When compared to the RoE and RoW, this further decrease from March 2020 to April 2020 in Italy was significantly less (p = 0.005), most likely reflecting the earlier effects of the containment measures in Italy, taken earlier than anywhere else in the West. Conclusions: The COVID-19 pandemic massively hit Italy and caused a disruption of healthcare services, including cardiac imaging studies. This raises concern about the medium- and long-term consequences for the high number of patients who were denied timely diagnoses and the subsequent lifesaving therapies and procedures

    International Impact of COVID-19 on the Diagnosis of Heart Disease

    No full text
    Background: The coronavirus disease 2019 (COVID-19) pandemic has adversely affected diagnosis and treatment of noncommunicable diseases. Its effects on delivery of diagnostic care for cardiovascular disease, which remains the leading cause of death worldwide, have not been quantified. Objectives: The study sought to assess COVID-19's impact on global cardiovascular diagnostic procedural volumes and safety practices. Methods: The International Atomic Energy Agency conducted a worldwide survey assessing alterations in cardiovascular procedure volumes and safety practices resulting from COVID-19. Noninvasive and invasive cardiac testing volumes were obtained from participating sites for March and April 2020 and compared with those from March 2019. Availability of personal protective equipment and pandemic-related testing practice changes were ascertained. Results: Surveys were submitted from 909 inpatient and outpatient centers performing cardiac diagnostic procedures, in 108 countries. Procedure volumes decreased 42% from March 2019 to March 2020, and 64% from March 2019 to April 2020. Transthoracic echocardiography decreased by 59%, transesophageal echocardiography 76%, and stress tests 78%, which varied between stress modalities. Coronary angiography (invasive or computed tomography) decreased 55% (p &lt; 0.001 for each procedure). In multivariable regression, significantly greater reduction in procedures occurred for centers in countries with lower gross domestic product. Location in a low-income and lower–middle-income country was associated with an additional 22% reduction in cardiac procedures and less availability of personal protective equipment and telehealth. Conclusions: COVID-19 was associated with a significant and abrupt reduction in cardiovascular diagnostic testing across the globe, especially affecting the world's economically challenged. Further study of cardiovascular outcomes and COVID-19–related changes in care delivery is warranted
    corecore