898 research outputs found

    Hydrologic test system for fracture flow studies in crystalline rock

    Get PDF
    A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site

    Report of the committee to review the use of J-13 well water in Nevada Nuclear Waste Storage Investigations

    Get PDF
    The Waste Management Project Office of the Department of Energy conducted a special audit of the activities of the Nevada Nuclear Waste Storage Investigation Project at Livermore. It was noted that there never has been a comprehensive, well-documented examination of the basis for the use of J-13 water in the nuclear waste storage investigations. In each of the sections of This Report, an issue relating to the use of J-13 water has been addressed. 58 refs., 19 figs., 8 tabs

    Differential activation of anti-erythrocyte and anti-DNA autoreactive B lymphocytes by the Yaa mutation

    Get PDF
    An as-yet-unidentified mutation, Y-linked autoimmune acceleration (Yaa), is responsible for the accelerated development of lupus-like autoimmune syndrome in mice. In view of a possible role for Yaa as a positive regulator of BCR signaling, we have explored whether the expression of the Yaa mutation affects the development and activation of transgenic autoreactive B cells expressing either 4C8 IgM anti-RBC or Sp6 IgM anti-DNA. In this study, we show that the expression of the Yaa mutation induced a lethal form of autoimmune hemolytic anemia in 4C8 transgenic C57BL/6 mice, likely as a result of activation of 4C8 anti-RBC autoreactive B cells early in life. This was further supported, although indirectly, by increased T cell-independent IgM production in spleens of nontransgenic C57BL/6 mice bearing the Yaa mutation. In contrast, Yaa failed to induce activation of Sp6 anti-DNA autoreactive B cells, consistent with a lack of increased IgM anti-DNA production in nontransgenic C57BL/6 Yaa mice. Our results suggest that Yaa can activate autoreactive B cells in a BCR-dependent manner, related to differences in the form and nature of autoantigens

    Program Plan: field radionuclide migration studies in Climax granite

    Get PDF
    This Program Plan describes the field radionuclide migration studies we plan to conduct in the Climax granite at the Nevada Test Site. Laboratory support studies are included to help us understand the geochemical and hydrologic processes involved in the field. The Program Plan begins with background information (Section 1) on how this program fits into the National Waste Terminal Storage Program Plan and discusses the needs for field studies of this type. The objectives stated in Section 2 are in direct response to these needs, particularly the need to determine whether laboratory studies accurately reflect actual field conditions and the need for field testing to provide a data base for verification of hydrologic and mass transport models. The technical scope (Section 3) provides a work breakdown structure that integrates the various activities and establishes a base for the technical approach described in Section 4. Our approach combines an interactive system of field and laboratory migration experiments with the use of hydrologic models for pre-test predictions and data interpretation. Section 5 on program interfaces identifies how information will be transferred to other related DOE projects. A schedule of activities and major milestones (Section 6) and the budget necessary to meet the project objectives (Section 7) are included in the Program Plan. Sections 8 and 9 contain brief descriptions of how the technical and program controls will be established and maintained and an outline of our quality assurance program. This program plan is an initial planning document and provides a general description of activities. An Engineering Test Plan containing detailed experimental test plans, an instrumentation plan and equipment design drawings will be published as a separate document

    IBRD Operational Decision Framework

    Get PDF
    The IBRD Operational Decision Framework in this document is an expansion of an emerging general risk management framework under development by an interagency working group. It provides the level of detail necessary to develop a general Consequence Management Guidance Document for biological contamination remediation and restoration. It is the intent of this document to support both wide area and individual site remediation and restoration activities. This product was initiated as a portion of the IBRD Task 1 Systems Analysis to aid in identification of wide area remediation and restoration shortcomings and gaps. The draft interagency general risk management framework was used as the basis for the analysis. The initial Task 1 analysis document expanded the draft interagency framework to a higher level of resolution, building on both the logic structure and the accompanying text explanations. It was then employed in a qualitative manner to identify responsible agencies, data requirements, tool requirements, and current capabilities for each decision and task. This resulted in identifying shortcomings and gaps needing resolution. Several meetings of a joint LLNL/SNL working group reviewed and approved the initial content of this analysis. At the conclusion of Task 1, work continued on the expanded framework to generate this Operational Decision Framework which is consistent with the existing interagency general risk management framework. A large LLNL task group met repeatedly over a three-month period to develop the expanded framework, coordinate the framework with the biological remediation checklist, and synchronize the logic with the Consequence Management Plan table of contents. The expanded framework was briefed at a large table top exercise reviewing the interagency risk management framework. This exercise had representation from major US metropolitan areas as well as national agencies. This product received positive comments from the participants. Upon completion of the Operational Decision Framework, another joint LLNL/SNL working group conducted a day-long review. Identified modifications were made to the document, resulting in the included product

    Weaving Academic Grace into the Fabric of Online Courses and Faculty Training: First-Year Engineering Student Advice for Online Faculty During the COVID-19 Pandemic and Faculty Responses

    Get PDF
    Background: In the spring of 2020, COVID-19 forced the majority of higher education online, resulting in a wave of new online students uniquely positioned to offer fresh perspectives and advice to faculty. Purpose: This study investigated the advice offered to online faculty by first-year engineering (FYE) students who were forced online during the pandemic and faculty ideas to address the student advice. Methods: This multi-methods study included qualitative data from 233 FYE students (in 67 teams across four class offerings) who provided advice for online faculty through an end-of-year team assignment, leveraging analytic induction methods for analysis. The Quality Matters Online Instructor Skill Set was used as the theoretical framework for viewing the student results (Quality Matters, 2016). After being presented with the student results, 41 faculty participants within two workshops brainstormed ways to respond to FYEs’ advice. Faculty workshop participants organized their own brainstorming/discussion results by themes within community documents. Results: Students forced online expressed the following needs/desires: instructional design practices appropriate for the online environment; understanding, flexibility, and patience from their faculty (which we defined as Academic Grace); instructor social presence; appropriate pedagogy for online learning environments; effective assessment; technologically capable instructors; and instructor understanding of their institutional context. Faculty advised responding to online students with more Academic Grace. Conclusions: This work reveals a new competency missing from traditional online instructor skills, that of Academic Grace. To embed Academic Grace within online courses, we propose that faculty consider a flexible bichronous model for online courses, in which students can choose to attend synchronous live lectures/classes or cover the material asynchronously at their own convenience. In this model, lecture/class recordings and supplemental asynchronous materials should be provided to foster fluid student movement between the learning modes. We also recommend online faculty training efforts include the components of Academic Grace: understanding, flexibility, and patience
    • …
    corecore