772 research outputs found

    Fumarate Analogs Act as Allosteric Inhibitors of the Human Mitochondrial NAD(P)+-Dependent Malic Enzyme

    Get PDF
    Human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME) is allosterically activated by the four-carbon trans dicarboxylic acid, fumarate. Previous studies have suggested that the dicarboxylic acid in a trans conformation around the carbon-carbon double bond is required for the allosteric activation of the enzyme. In this paper, the allosteric effects of fumarate analogs on m-NAD(P)-ME are investigated. Two fumarate-insensitive mutants, m-NAD(P)-ME_R67A/R91A and m-NAD(P)-ME_K57S/E59N/K73E/D102S, as well as c-NADP-ME, were used as the negative controls. Among these analogs, mesaconate, trans-aconitate, monomethyl fumarate and monoethyl fumarate were allosteric activators of the enzyme, while oxaloacetate, diethyl oxalacetate, and dimethyl fumarate were found to be allosteric inhibitors of human m-NAD(P)-ME. The IC50 value for diethyl oxalacetate was approximately 2.5 mM. This paper suggests that the allosteric inhibitors may impede the conformational change from open form to closed form and therefore inhibit m-NAD(P)-ME enzyme activity

    Complement C1q Activates Tumor Suppressor WWOX to Induce Apoptosis in Prostate Cancer Cells

    Get PDF
    BACKGROUND:Tissue exudates contain low levels of serum complement proteins, and their regulatory effects on prostate cancer progression are largely unknown. We examined specific serum complement components in coordinating the activation of tumor suppressors p53 and WWOX (also named FOR or WOX1) and kinases ERK, JNK1 and STAT3 in human prostate DU145 cells. METHODOLOGY/PRINCIPAL FINDINGS:DU145 cells were cultured overnight in 1% normal human serum, or in human serum depleted of an indicated complement protein. Under complement C1q- or C6-free conditions, WOX1 and ERK were mainly present in the cytoplasm without phosphorylation, whereas phosphorylated JNK1 was greatly accumulated in the nuclei. Exogenous C1q rapidly restored the WOX1 activation (with Tyr33 phosphorylation) in less than 2 hr. Without serum complement C9, p53 became activated, and hyaluronan (HA) reversed the effect. Under C6-free conditions, HA induced activation of STAT3, an enhancer of metastasis. Notably, exogenous C1q significantly induced apoptosis of WOX1-overexpressing DU145 cells, but not vehicle-expressing cells. A dominant negative and Y33R mutant of WOX1 blocked the apoptotic effect. C1q did not enhance p53-mediated apoptosis. By total internal reflection fluorescence (TIRF) microscopy, it was determined that C1q destabilized adherence of WOX1-expressing DU145 cells by partial detaching and inducing formation of clustered microvilli for focal adhesion particularly in between cells. These cells then underwent shrinkage, membrane blebbing and death. Remarkably, as determined by immunostaining, benign prostatic hyperplasia and prostate cancer were shown to have a significantly reduced expression of tissue C1q, compared to age-matched normal prostate tissues. CONCLUSIONS/SIGNIFICANCE:We conclude that complement C1q may induce apoptosis of prostate cancer cells by activating WOX1 and destabilizing cell adhesion. Downregulation of C1q enhances prostate hyperplasia and cancerous formation due to failure of WOX1 activation

    Common genetic variants of the ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7), magnesium intake, and risk of type 2 diabetes in women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ion channel transient receptor potential membrane melastatin 6 and 7 (TRPM6 and TRPM7) play a central role in magnesium homeostasis, which is critical for maintaining glucose and insulin metabolism. However, it is unclear whether common genetic variation in <it>TRPM6 </it>and <it>TRPM7 </it>contributes to risk of type 2 diabetes.</p> <p>Methods</p> <p>We conducted a nested case-control study in the Women's Health Study. During a median of 10 years of follow-up, 359 incident diabetes cases were diagnosed and matched by age and ethnicity with 359 controls. We analyzed 20 haplotype-tagging single nucleotide polymorphisms (SNPs) in <it>TRPM6 </it>and 5 common SNPs in <it>TRPM7 </it>for their association with diabetes risk.</p> <p>Results</p> <p>Overall, there was no robust and significant association between any single SNP and diabetes risk. Neither was there any evidence of association between common <it>TRPM6 </it>and <it>TRPM7 </it>haplotypes and diabetes risk. Our haplotype analyses suggested a significant risk of type 2 diabetes among carriers of both the rare alleles from two non-synomous SNPs in <it>TRPM6 </it>(Val1393Ile in exon 26 [rs3750425] and Lys1584Glu in exon 27 [rs2274924]) when their magnesium intake was lower than 250 mg per day. Compared with non-carriers, women who were carriers of the haplotype 1393Ile-1584Glu had an increased risk of type 2 diabetes (OR, 4.92, 95% CI, 1.05–23.0) only when they had low magnesium intake (<250 mg/day).</p> <p>Conclusion</p> <p>Our results provide suggestive evidence that two common non-synonymous <it>TRPM6 </it>coding region variants, Ile1393Val and Lys1584Glu polymorphisms, might confer susceptibility to type 2 diabetes in women with low magnesium intake. Further replication in large-scale studies is warranted.</p

    Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantitative real-time reverse transcriptase PCR (RT-qPCR) has been widely used for quantification of mRNA as a way to determine key genes involved in different biological processes. For accurate gene quantification analysis, normalization of RT-qPCR data is absolutely essential. To date, normalization is most frequently achieved by the use of internal controls, often referred to as reference genes. However, several studies have shown that the reference genes used for the quantification of mRNA expression can be affected by the experimental set-up or cell type resulting in variation of the expression level of these key genes. Therefore, the evaluation of reference genes is critical for gene expression profiling, which is often neglected in gene expression studies of insects. For this purpose, ten candidate reference genes were investigated in three different tissues (midgut, Malpighian tubules, and fat body) of the oriental fruit fly, <it>Bactrocera dorsalis </it>(Hendel).</p> <p>Results</p> <p>Two different programs, <it>geNorm </it>and <it>Normfinder</it>, were used to analyze the data. According to <it>geNorm</it>, α-TUB + ACT5 are the most appropriate reference genes for gene expression profiling across the three different tissues in the female flies, while ACT3 + α-TUB are considered as the best for males. Furthermore, we evaluated the stability of the candidate reference genes to determine the sexual differences in the same tissue. In the midgut and Malpighian tubules, ACT2 + α-TUB are the best choice for both males and females. However, α-TUB + ACT1 are the best pair for fat body. Meanwhile, the results calculated by <it>Normfinder </it>are quite the same as the results with <it>geNorm</it>; α-TUB is always one of the most stable genes in each sample validated by the two programs.</p> <p>Conclusions</p> <p>In this study, we validated the suitable reference genes for gene expression profiling in different tissues of <it>B. dorsalis. </it>Moreover, appropriate reference genes were selected out for gene expression profiling of the same tissues taking the sexual differences into consideration. This work not only formed a solid basis for future gene expression study in <it>B. dorsalis</it>, but also will serve as a resource to screen reference genes for gene expression studies in any other insects.</p

    Deletion of Forkhead Box M1 Transcription Factor from Respiratory Epithelial Cells Inhibits Pulmonary Tumorigenesis

    Get PDF
    The Forkhead Box m1 (Foxm1) protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1−/− mice) prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA)/butylated hydroxytoluene (BHT). Decreased lung tumorigenesis in epFoxm1−/− mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2α (TOPO-2α), a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2α mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2α promoter region, indicating that TOPO-2α is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2α expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy

    The Role of Galectin-1 and Galectin-3 in the Mucosal Immune Response to Citrobacter rodentium Infection

    Get PDF
    Despite their abundance at gastrointestinal sites, little is known about the role of galectins in gut immune responses. We have therefore investigated the Citrobacter rodentium model of colonic infection and inflammation in Galectin-1 or Galectin-3 null mice. Gal-3 null mice showed a slight delay in colonisation after inoculation with C. rodentium and a slight delay in resolution of infection, associated with delayed T cell, macrophage and dendritic cell infiltration into the gut mucosa. However, Gal-1 null mice also demonstrated reduced T cell and macrophage responses to infection. Despite the reduced T cell and macrophage response in Gal-1 null mice, there was no effect on C. rodentium infection kinetics and pathology. Overall, Gal-1 and Gal-3 play only a minor role in immunity to a gut bacterial pathogen

    DAF-2/Insulin-Like Signaling in C. elegans Modifies Effects of Dietary Restriction and Nutrient Stress on Aging, Stress and Growth

    Get PDF
    Dietary restriction (DR) and reduced insulin/IGF-I-like signaling (IIS) are two regimens that promote longevity in a variety of organisms. Genetic analysis in C. elegans nematodes has shown that DR and IIS couple to distinct cellular signaling pathways. However, it is not known whether these pathways ultimately converge on overlapping or distinct targets to extend lifespan.We investigated this question by examining additional effects of DR in wildtype animals and in daf-2 mutants with either moderate or severe IIS deficits. Surprisingly, DR and IIS had opposing effects on these physiological processes. First, DR induced a stress-related change in intestinal vesicle trafficking, termed the FIRE response, which was suppressed in daf-2 mutants. Second, DR did not strongly affect expression of a daf-2- and stress-responsive transcriptional reporter. Finally, DR-related growth impairment was suppressed in daf-2 mutants.These findings reveal that an important biological function of DAF-2/IIS is to enhance growth and survival under nutrient-limited conditions. However, we also discovered that levels of DAF-2 pathway activity modified the effects of DR on longevity. Thus, while DR and IIS clearly affect lifespan through independent targets, there may also be some prolongevity targets that are convergently regulated by these pathways
    corecore