
Fumarate Analogs Act as Allosteric Inhibitors of the
Human Mitochondrial NAD(P)+-Dependent Malic Enzyme
Ju-Yi Hsieh1., Jyung-Hurng Liu1,2., Pai-Chun Yang1, Chi-Li Lin3, Guang-Yaw Liu4*, Hui-Chih Hung1,2,5*

1 Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 2 Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung,

Taiwan, 3 Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, 4 Institute of Microbiology & Immunology, Chung Shan Medical University, and Division

of Allergy, Immunology, and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan, 5 Agricultural Biotechnology Center (ABC), National Chung Hsing

University, Taichung, Taiwan

Abstract

Human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME) is allosterically activated by the four-carbon trans
dicarboxylic acid, fumarate. Previous studies have suggested that the dicarboxylic acid in a trans conformation around the
carbon-carbon double bond is required for the allosteric activation of the enzyme. In this paper, the allosteric effects of
fumarate analogs on m-NAD(P)-ME are investigated. Two fumarate-insensitive mutants, m-NAD(P)-ME_R67A/R91A and m-
NAD(P)-ME_K57S/E59N/K73E/D102S, as well as c-NADP-ME, were used as the negative controls. Among these analogs,
mesaconate, trans-aconitate, monomethyl fumarate and monoethyl fumarate were allosteric activators of the enzyme, while
oxaloacetate, diethyl oxalacetate, and dimethyl fumarate were found to be allosteric inhibitors of human m-NAD(P)-ME. The
IC50 value for diethyl oxalacetate was approximately 2.5 mM. This paper suggests that the allosteric inhibitors may impede
the conformational change from open form to closed form and therefore inhibit m-NAD(P)-ME enzyme activity.
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Introduction

Malic enzymes (MEs) are a family of Mg2+ or Mn2+-dependent

oxidative decarboxylases that catalyze L-malate to CO2 and

pyruvate, with a concomitant reduction of NAD(P)+ to NAD(P)H

[1–4]. Malic enzymes are abundant in all species from bacteria to

humans. In mammals, there are three isoforms distributed within

the cells according to their subcellular localization and cofactor

specificity: the cytosolic NADP+-dependent malic enzyme (c-

NADP-ME, ME1) [5,6], the mitochondrial NAD(P)+-dependent

malic enzyme (m-NAD(P)-ME, ME2) [2,7,8] and the mitochon-

drial NADP+-dependent malic enzyme (m-NADP-ME, ME3) [9].

c-NADP-ME is expressed in the liver and adipose tissues [1,5] and

generates the NADPH required for the biosynthesis of long-chain

fatty acids and steroids [1,5,7,9] m-NADP-ME is found in tissues

with low division rates, such as heart, muscle and brain tissue, and

it also generates the NADPH for fatty acid biosynthesis [1]. The

m-NAD(P)-ME isoform can use either NAD+ or NADP+ as a

cofactor in the catalytic reaction, and therefore, this enzyme

generates NADH and NADPH in the mitochondria and may play

dual roles in energy production and reductive biosynthesis

[2,10,11]. Furthermore, m-NAD(P)-ME is exclusively regulated

by the TCA cycle intermediate, fumarate, which acts as an

allosteric activator of the enzyme. The enzyme is also inhibited by

ATP, but the ATP binding sites differ from the fumarate binding

sites on the enzyme [12–14].

There is growing evidence that the m-NAD(P)-ME is involved

in tumor growth and transformation because it is overexpressed in

tumors and is required for optimal NADPH production,

glutaminolysis and lipid synthesis [7,8,11,15–19]. Recently studies

showed that p53 inversely regulates these metabolic pathways via

m-NAD(P)-ME repression [20,21]. Because allosteric regulation is

unique to m-NAD(P)-ME and may subsequently have profound

effects on cancer cell metabolism, designing or discovering

allosteric inhibitors for this enzyme may be important for cancer

therapy.

Various structures of human m-NAD(P)-ME, including an open

form without substrate and metal ion and a closed form with a

bound substrate analog and all cofactors and regulators, are

available [12,22–24]. In the structure of the enzyme, two

regulatory sites can be found in proximity to the active site. One

site is located at the dimer interface and is occupied by the

allosteric activator, fumarate [12,25]; the other site is located at the

tetramer interface and is occupied by either an NAD or an ATP

molecule. In the structure of the fumarate-bound enzyme,

fumarate is ion-paired with Arg67 and Arg91. When these Arg

residues are mutated, the fumarate activating effect is completely

abolished [12]. Furthermore, earlier studies by our group

demonstrated that some ionic amino acid residues that are not

conserved among the different malic enzyme isoforms, including

Lys57, Glu59, Lys73 and Asp102, have remarkable effects on

fumarate-induced activation [12,26–28]. We also examined the
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Figure 1. Chemical structures of fumarate and its analogs. These structures were generated using Accelrys Draw (Accelrys, USA).
doi:10.1371/journal.pone.0098385.g001

Figure 2. Allosteric activation of human m-NAD(P)-ME by fumarate and its analogs. (A) Fumarate; (B) Mesaconate; (C) Trans-aconitate; (D)
Monomethyl fumarate; (E) Monoethyl fumarate. Closed circles, m-NAD(P)-ME; open circles, m-NAD(P)-ME_R67A/R91A; closed triangles, m-NAD(P)-
ME_K57S/E59N/K73E/D102S; open triangles, c -NADP-ME. The specific activities of the m-NADP-(P)-ME WT, R67A/R91A, K57S/E59N/K73E/D102S and
c-NADP-ME WT were approximately 0.1, 0.005, 0.02 and 0.08 mmol/min, respectively, and the final enzyme concentration in an individual assay was
20, 400, 100, and 25 ng/ml, respectively. The v and v0 represented the enzyme activity in the presence and absence of fumarate analogs, respectively.
doi:10.1371/journal.pone.0098385.g002
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effect of structural analogs of the substrate malate and the

allosteric activator fumarate on human m-NAD(P)-ME and,

therefore, suggest that dicarboxylic acid in a trans conformation

around the carbon-carbon double bond is required for the

allosteric activation of the enzyme.

In this paper, the effects of fumarate analogs on m-NAD(P)-ME

and c-NADP-ME were investigated. Among these analogs, diethyl

oxaloacetate was found to be an allosteric inhibitor of human m-

NAD(P)-ME.

Results and Discussion

As previously mentioned, fumarate is the allosteric activator of

human m-NAD(P)-ME [13]. Several residues have been shown to

interact with fumarate directly or indirectly. The direct residues

are Arg67 and Arg91, and the indirect residues are Lys57, Asp59,

Lys73 and Asp102. Mutation of these residues causes the loss of

the fumarate activating effect. Additionally, c-NADP-ME is

unresponsive to fumarate activation. Here, the two fumarate-

insensitive mutants, m-NAD(P)-ME_R67A/R91A and m-

NAD(P)-ME_K57S/E59N/K73E/D102S, as well as c-NADP-

ME, were used as the negative controls.

Allosteric Activation of Human m-NAD(P)-ME by
Fumarate and its Analogs

Figure 1 shows the chemical structures of fumarate and its

analogs and Figure 2 shows the activating effects of fumarate and

its analogs on m-NAD(P)-ME. Fumarate can activate the enzyme

by approximately 2-fold (Figure 2A, close circles; Table 1), while

the m-NAD(P)-ME_R67A/R91A, m-NAD(P)-ME_K57S/E59N/

K73E/D102S and c-NADP-ME enzymes cannot be activated by

fumarate (Figure 2, open circles, closed triangles and open

triangles, respectively; Table 1). Mesaconate is a trans dicarboxylic

acid with 2-methyl group substitution (Figure 1). Although it can

activate the enzyme by approximately 1.7-fold (Table 1), the

concentration needed for half-maximal activation is substantially

higher than that of fumarate (Figure 2B, closed circles).

Trans-aconitate is also a trans dicarboxylic acid but with a 2-

carboxylate group addition (Figure 1). This compound showed a

slight activation of m-NAD(P)-ME (Figure 2C, closed circles;

Table 1). Single methyl or ethyl group substitutions of the terminal

carboxylate of fumarate (Figure 1) had no significant influence on

the enzyme activation of these two fumarate analogs. Monomethyl

and monoethyl fumarate displayed activating effects similar to

fumarate (Figure 2, D and E, respectively, closed circles; Table 1),

indicating that the binding modes of these two mono-substituted

fumarates were not significantly changed.

Allosteric Inhibition of Human m-NAD(P)-ME by
Fumarate and its Analogs

Dimethyl or diethyl substitutions on both terminal carboxylates

of fumarate (Figure 1) showed opposite effects on m-NAD(P)-ME.

Dimethyl and diethyl fumarate inversely inhibited enzyme activity

(Figure 3, A and B, respectively, closed circles; Table 1). Of the

TCA cycle intermediates, fumarate and succinate are activators of

the enzyme, but a-ketoglutarate (a-KG), the five-carbon a-

ketodicarboxylic acid, is an inhibitor of ME.29 Oxaloacetate

(OAA), a four-carbon a-ketodicarboxylic acid, had little effect on

m-NAD(P)-ME enzyme activity (Figure 3C, closed circles;

Table 1). However, once the ethyl groups were substituted on

both terminal carboxyl groups of OAA (Figure 1), the diethyl

oxalacetate showed significant inhibition on m-NAD(P)-ME

enzyme activity (Figure 3D, closed circles; Table 1). The IC50

value of diethyl oxalacetate was approximately 2.5 mM.

Maleate, the cis isomer of fumarate, significantly inhibited ME

activity [29]. However, dimethyl and diethyl maleate showed little

inhibition of the enzyme activity (Figure 3, D and E, respectively,

closed circles; Table 1). The fumarate analogs had activating or

inhibiting effects on m-NAD(P)-ME (Figure 2 and 3, closed circles;

Table 1) at different levels; however, they had no noticeable effects

on c-NADP-ME (Figure 2 and 3, open triangles; Table 1).

Furthermore, no further fumarate activation was displayed in the

fumarate-binding abortive mutants, m-NAD(P)-ME_R67A/R91A

and m-NAD(P)-ME_K57S/E59N/K73E/D102S (Figure 2 and 3,

Table 1. Effect of fumarate analogs on human m-NAD(P)-ME and c-NADP-ME1,2.

3,4m-NAD(P)-ME WT

3,4m-NAD(P)-ME R67A/
R91A 3,4m-NAD(P)-ME K57S/E59N/K73E/D102S 3,5c-NADP-ME WT

Fumarate 1.9860.14 0.9860.06 0.9760.04 1.0160.04

Mesaconate 1.7560.16 1.0160.04 0.9960.05 1.0260.03

trans-Aconitate 1.1560.03 1.0160.05 0.9860.03 0.9960.04

Monomethyl fumarate 2.7860.08 1.0760.03 1.1760.05 0.9960.03

Monoethyl fumarate 1.8360.04 0.9860.04 1.0160.05 1.0160.03

Oxaloacetate 1.0060.03 0.9460.02 0.8760.02 1.0260.03

Diethyl oxalacetate 0.3160.03 0.8560.02 0.9160.03 0.9360.02

Dimethyl maleate 1.0060.02 0.9760.02 0.9560.03 0.9960.03

Diethyl maleate 0.8860.03 0.9960.03 0.9560.03 1.0160.02

Dimethyl fumarate 0.7960.03 0.9960.02 0.9860.02 0.9960.02

Diethyl fumarate 0.6560.04 0.9260.01 0.9460.02 1.0160.03

1These values were the ratios of specific activities of the enzyme determined in the presence and absence of these chemical compounds.
2These values were the average with standard deviation of three-time repeats.
3The enzyme specific activities of the m-NADP-(P)-ME WT, R67A/R91A, K57S/E59N/K73E/D102S and c-NADP-ME WT were approximately 0.1, 0.005, 0.02 and 0.08 mmol/
min, respectively, and the final enzyme concentration in an individual assay was 20, 400, 100, and 25 ng/ml, respectively.
4For m-NAD(P)-ME, the final concentrations of these analogs were fixed at 5 mM, except for monoethyl fumarate and mesaconate, which were fixed at 10 mM and
20 mM, respectively.
5For c-NADP-ME, the final concentrations of these analogs were fixed at 2 mM.
doi:10.1371/journal.pone.0098385.t001
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open circles and closed triangles, respectively; Table 1). Therefore,

these fumarate analogs supposedly bind to the allosteric pocket of

m-NAD(P)-ME at the dimer interface.

We found that diethyl oxalacetate may act as an allosteric

inhibitor of the enzyme. To investigate this possibility, diethyl-

oxalacetate inhibition experiments without or with fumarate were

performed (Figure 4A, closed and open circles, respectively). It was

clear that the inhibition of m-NAD(P)-ME by diethyl oxalacetate

was decreased if fumarate was present (Figure 4A). Moreover, we

examined the effect of fumarate on the rescue of the diethyl

oxalacetate-inhibited m-NAD(P)-ME enzyme activity (Figure 4B).

The m-NAD(P)-ME enzyme was first preincubated with 3 mM

diethyl oxalacetate. The residual enzyme activity increased from

50% to over 100% with increasing fumarate concentrations,

indicating that fumarate not only restores the enzyme activity but

also activates the enzyme further. The above results also implied

Figure 3. Allosteric inhibition of human m-NAD(P)-ME by fumarate and its analogs. (A) Dimethyl fumarate; (B) Diethyl fumarate; (C)
Oxaloacetate; (D) Diethyl oxalacetate; (E) Dimethyl maleate; (F) Diethyl maleate. Closed circles, m-NAD(P)-ME; open circles, m-NAD(P)-ME_R67A/R91A;
closed triangles, m-NAD(P)-ME_K57S/E59N/K73E/D102S; open triangles, c-NADP-ME. The specific activities of the m-NADP-(P)-ME WT, R67A/R91A,
K57S/E59N/K73E/D102S and c-NADP-ME WT were approximately 0.1, 0.005, 0.02 and 0.08 mmol/min, respectively, and the final enzyme concentration
in an individual assay was 20, 400, 100, and 25 ng/ml, respectively. The v and v0 represented the enzyme activity in the presence and absence of
fumarate analogs, respectively.
doi:10.1371/journal.pone.0098385.g003
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that diethyl-oxalacetate competes with fumarate in the allosteric

pocket at the dimer interface.

Conclusion

This paper reported an allosteric inhibitor of human m-

NAD(P)-ME, diethyl oxalacetate. Because the binding of the

allosteric inhibitors may impede the conformational change from

open form to closed form, this paper may provide another

rationale in designing allosteric inhibitors of the human m-

NAD(P)-ME, a molecular target for cancer biology [11,20].

Materials and Methods

Chemicals
L(-)-malate, fumarate, mesaconate, trans-aconitate, monomethyl

fumarate, monoethyl fumarate, oxaloacetate, diethyl oxalacetate,

dimethyl maleate, diethyl maleate, dimethyl fumarate and diethyl

fumarate were purchased from Fluka (Buchs, Switzerland).

Expression and Purification of the Recombinant m-
NAD(P)-ME and c-NADP-ME

The protocols for the preparation of human m-NAD(P)-ME

and c-NADP-ME have been previously described [30–32]. For m-

NAD(P)-ME, the pRH281 expression plasmid was used to carry

the gene, and expression was controlled by a trp promoter, which

was modulated by the addition of b-indol-3-acetic acid (IAA). The

expression vector was transformed into Escherichia coli BL21 cells to

overexpress human m-NAD(P)-ME. The overexpressed enzyme

was then purified by ATP affinity chromatography (Sigma). For c-

NADP-ME, the pET21b expression plasmid was used to carry the

gene, and expression was controlled by an inducible T7 promoter

system, which was modulated by the addition of isopropyl b-D-1-

thiogalactopyranoside (IPTG). The expression vector was trans-

formed into E. coli BL21(DE3) cells to overexpress human c-

NADP-ME. The overexpressed enzyme was then purified using a

HIS-Select Nickel Affinity Gel column (Sigma). The lysate-Ni-

NTA mixture was washed with buffer (10 mM imidazole,

500 mM sodium chloride, 2 mM b-mercaptoethanol, and

30 mM Tris-HCl, pH 7.4) to remove the discarded proteins,

and c-NADP-ME was subsequently eluted with elution buffer

(250 mM imidazole, 500 mM sodium chloride, 2 mM b-mercap-

toethanol, and 30 mM Tris-HCl, pH 7.4). The purified enzymes

were buffer-exchanged and concentrated in a 30 mM Tris buffer

(pH 7.4) using an Amicon Ultra-15 centrifugal filter device

(Millipore) with a molecular weight cut-off of 30 kDa. Enzyme

purity was examined by SDS-PAGE, and protein concentration

was determined using the Bradford method [33].

Site-directed Mutagenesis
Single and double mutants were constructed using the

QuikChange kit (Stratagene); the human m-NAD(P)-ME expres-

sion vector (pRH281) was used as a template for mutagenesis. The

following PCR primers were used: 59-CTTCAAGGACTTC-

TACCTCCCTCTATAGAGACACAAGATATTC-39 for K57S;

59-CGATTTCATAGAAACTTGGAAAAAATGACTAGCCCT-

TTGG-39 for K73E; 59-GTTTTATAGAATACTGCAATCC-
GACATTGAGAGTTTAATGCC-39 for D102S; 59-CTACCT-

CCCTCTATAAACACACAAGATATTCAAGCC-39 for K57S/

E59N; 59-CACAAGATATTCAAGCCTTAGCGTTTCATA-

GAAACTTGAAG-39 for R67A, and 59-CTACATAATGGGAA-

TACAAGAAGCGAATGAGAAATTGTTTTATAG-39 for

R91A. The PCR reaction was performed with the Pfu DNA

polymerase and was incubated at 95uC for 30 sec, 55uC for 1 min

and 68uC for 2 min per kb of plasmid length for 16–20 cycles. The

templates were digested with the DpnI restriction enzyme, and the

resulting plasmid containing the desired mutation was transformed

into E. coli XL-1 cells (Stratagene). All mutation sites were checked

by sequencing.

Enzyme Activity Assay
Human m-NAD(P)-ME and c-NADP-ME were assayed in

reaction buffer containing 50 mM Tris-HCl (pH 7.4), 15 mM L-

malate, 1 mM NAD+/NADP+ and 10 mM MgCl2 with various

concentrations of fumarate or its analogs in a total volume of 1 ml.

The absorbance at 340 nm was continuously monitored in a UV/

VIS spectrophotometer Lambda 25 (Perkin Elmer, USA). An

absorption coefficient of 6.22 cm21 mM21 at 340 nm for

NAD(P)H was used in the calculations. The diethyl oxalacetate

Figure 4. Effect of fumarate on diethyl oxalacetate-inhibited m-
NAD(P)-ME activity. (A) The diethyl oxalacetate inhibition experiment
of WT m-NAD(P)-ME without (closed circles) or with (open circles) 5 mM
fumarate. (B) The fumarate rescue experiment of WT m-NAD(P)-ME. The
enzyme was preincubated with 3 mM diethyl oxalacetate, and then the
activity was restored with increasing concentrations of fumarate. The
specific activities of the m-NADP-(P)-ME WT was approximately
0.1 mmol/min and the final enzyme concentration in an individual
assay was 20 ng/ml. The v and v0 represented the enzyme activity in the
presence and absence of fumarate analogs, respectively.
doi:10.1371/journal.pone.0098385.g004
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inhibition experiment was assayed with 50 mM Tris-HCl

(pH 7.4), 10 mM malate (pH 7.4), 10 mM MgCl2 and 1.0 mM

NAD+ without or with 5 mM fumarate and a series of diethyl

oxalacetate concentrations, ranging from 0 to 5 mM. The

fumarate rescue experiment was assayed with 50 mM Tris-HCl

(pH 7.4), 10 mM malate (pH 7.4), 10 mM MgCl2 and 1.0 mM

NAD+ with 3 mM diethyl oxalacetate and a series of fumarate

concentrations, ranging from 0 to 6 mM. All of the calculations

were performed using the Sigma Plot 10.0 software program

(Jandel, San Rafael, CA).
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