289 research outputs found

    Complexity of Bradley-Manna-Sipma Lexicographic Ranking Functions

    Get PDF
    In this paper we turn the spotlight on a class of lexicographic ranking functions introduced by Bradley, Manna and Sipma in a seminal CAV 2005 paper, and establish for the first time the complexity of some problems involving the inference of such functions for linear-constraint loops (without precondition). We show that finding such a function, if one exists, can be done in polynomial time in a way which is sound and complete when the variables range over the rationals (or reals). We show that when variables range over the integers, the problem is harder -- deciding the existence of a ranking function is coNP-complete. Next, we study the problem of minimizing the number of components in the ranking function (a.k.a. the dimension). This number is interesting in contexts like computing iteration bounds and loop parallelization. Surprisingly, and unlike the situation for some other classes of lexicographic ranking functions, we find that even deciding whether a two-component ranking function exists is harder than the unrestricted problem: NP-complete over the rationals and Σ2P\Sigma^P_2-complete over the integers.Comment: Technical report for a corresponding CAV'15 pape

    Investigation of initiation of gigantic jets connecting thunderclouds to the ionosphere

    Get PDF
    The initiation of giant electrical discharges called as "gigantic jets" connecting thunderclouds to the ionosphere is investigated by numerical simulation method in this paper. Using similarity relations, the triggering conditions of streamer formation in laboratory situations are extended to form a criterion of initiation of gigantic jets. The energy source causing a gigantic jet is considered due to the quasi-electrostatic field generated by thunderclouds. The electron dynamics from ionization threshold to streamer initiation are simulated by the Monte Carlo technique. It is found that gigantic jets are initiated at a height of ~18-24 km. This is in agreement with the observations. The method presented in this paper could be also applied to the analysis of the initiation of other discharges such as blue jets and red sprites.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Self-Regulation of Amygdala Activation Using Real-Time fMRI Neurofeedback

    Get PDF
    Real-time functional magnetic resonance imaging (rtfMRI) with neurofeedback allows investigation of human brain neuroplastic changes that arise as subjects learn to modulate neurophysiological function using real-time feedback regarding their own hemodynamic responses to stimuli. We investigated the feasibility of training healthy humans to self-regulate the hemodynamic activity of the amygdala, which plays major roles in emotional processing. Participants in the experimental group were provided with ongoing information about the blood oxygen level dependent (BOLD) activity in the left amygdala (LA) and were instructed to raise the BOLD rtfMRI signal by contemplating positive autobiographical memories. A control group was assigned the same task but was instead provided with sham feedback from the left horizontal segment of the intraparietal sulcus (HIPS) region. In the LA, we found a significant BOLD signal increase due to rtfMRI neurofeedback training in the experimental group versus the control group. This effect persisted during the Transfer run without neurofeedback. For the individual subjects in the experimental group the training effect on the LA BOLD activity correlated inversely with scores on the Difficulty Identifying Feelings subscale of the Toronto Alexithymia Scale. The whole brain data analysis revealed significant differences for Happy Memories versus Rest condition between the experimental and control groups. Functional connectivity analysis of the amygdala network revealed significant widespread correlations in a fronto-temporo-limbic network. Additionally, we identified six regions — right medial frontal polar cortex, bilateral dorsomedial prefrontal cortex, left anterior cingulate cortex, and bilateral superior frontal gyrus — where the functional connectivity with the LA increased significantly across the rtfMRI neurofeedback runs and the Transfer run. The findings demonstrate that healthy subjects can learn to regulate their amygdala activation using rtfMRI neurofeedback, suggesting possible applications of rtfMRI neurofeedback training in the treatment of patients with neuropsychiatric disorders

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Flavopiridol Pharmacogenetics: Clinical and Functional Evidence for the Role of SLCO1B1/OATP1B1 in Flavopiridol Disposition

    Get PDF
    Flavopiridol is a cyclin-dependent kinase inhibitor in phase II clinical development for treatment of various forms of cancer. When administered with a pharmacokinetically (PK)-directed dosing schedule, flavopiridol exhibited striking activity in patients with refractory chronic lymphocytic leukemia. This study aimed to evaluate pharmacogenetic factors associated with inter-individual variability in pharmacokinetics and outcomes associated with flavopiridol therapy.Thirty-five patients who received single-agent flavopiridol via the PK-directed schedule were genotyped for 189 polymorphisms in genes encoding 56 drug metabolizing enzymes and transporters. Genotypes were evaluated in univariate and multivariate analyses as covariates in a population PK model. Transport of flavopiridol and its glucuronide metabolite was evaluated in uptake assays in HEK-293 and MDCK-II cells transiently transfected with SLCO1B1. Polymorphisms in ABCC2, ABCG2, UGT1A1, UGT1A9, and SLCO1B1 were found to significantly correlate with flavopiridol PK in univariate analysis. Transport assay results indicated both flavopiridol and flavopiridol-glucuronide are substrates of the SLCO1B1/OATP1B1 transporter. Covariates incorporated into the final population PK model included bilirubin, SLCO1B1 rs11045819 and ABCC2 rs8187710. Associations were also observed between genotype and response. To validate these findings, a second set of data with 51 patients was evaluated, and overall trends for associations between PK and PGx were found to be consistent.Polymorphisms in transport genes were found to be associated with flavopiridol disposition and outcomes. Observed clinical associations with SLCO1B1 were functionally validated indicating for the first time its relevance as a transporter of flavopiridol and its glucuronide metabolite. A second 51-patient dataset indicated similar trends between genotype in the SLCO1B1 and other candidate genes, thus providing support for these findings. Further study in larger patient populations will be necessary to fully characterize and validate the clinical impact of polymorphisms in SLCO1B1 and other transporter and metabolizing enzyme genes on outcomes from flavopiridol therapy

    Genome-wide association of multiple complex traits in outbred mice by ultra-low-coverage sequencing

    Get PDF
    Two bottlenecks impeding the genetic analysis of complex traits in rodents are access to mapping populations able to deliver gene-level mapping resolution and the need for population-specific genotyping arrays and haplotype reference panels. Here we combine low-coverage (0.15×) sequencing with a new method to impute the ancestral haplotype space in 1,887 commercially available outbred mice. We mapped 156 unique quantitative trait loci for 92 phenotypes at a 5% false discovery rate. Gene-level mapping resolution was achieved at about one-fifth of the loci, implicating Unc13c and Pgc1a at loci for the quality of sleep, Adarb2 for home cage activity, Rtkn2 for intensity of reaction to startle, Bmp2 for wound healing, Il15 and Id2 for several T cell measures and Prkca for bone mineral content. These findings have implications for diverse areas of mammalian biology and demonstrate how genome-wide association studies can be extended via low-coverage sequencing to species with highly recombinant outbred populations

    Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment

    Get PDF
    BACKGROUND: Biomarkers for mercury (Hg) exposure have frequently been used to assess exposure and risk in various groups of the general population. We have evaluated the most frequently used biomarkers and the physiology on which they are based, to explore the inter-individual variations and their suitability for exposure assessment. METHODS: Concentrations of total Hg (THg), inorganic Hg (IHg) and organic Hg (OHg, assumed to be methylmercury; MeHg) were determined in whole blood, red blood cells, plasma, hair and urine from Swedish men and women. An automated multiple injection cold vapour atomic fluorescence spectrophotometry analytical system for Hg analysis was developed, which provided high sensitivity, accuracy, and precision. The distribution of the various mercury forms in the different biological media was explored. RESULTS: About 90% of the mercury found in the red blood cells was in the form of MeHg with small inter-individual variations, and part of the IHg found in the red blood cells could be attributed to demethylated MeHg. THg in plasma was associated with both IHg and MeHg, with large inter-individual variations in the distribution between red blood cells and plasma. THg in hair reflects MeHg exposure at all exposure levels, and not IHg exposure. The small fraction of IHg in hair is most probably emanating from demethylated MeHg. The inter-individual variation in the blood to hair ratio was very large. The variability seemed to decrease with increasing OHg in blood, most probably due to more frequent fish consumption and thereby blood concentrations approaching steady state. THg in urine reflected IHg exposure, also at very low IHg exposure levels. CONCLUSION: The use of THg concentration in whole blood as a proxy for MeHg exposure will give rise to an overestimation of the MeHg exposure depending on the degree of IHg exposure, why speciation of mercury forms is needed. THg in RBC and hair are suitable proxies for MeHg exposure. Using THg concentration in plasma as a measure of IHg exposure can lead to significant exposure misclassification. THg in urine is a suitable proxy for IHg exposure

    Nucleoporin98-96 Function Is Required for Transit Amplification Divisions in the Germ Line of Drosophila melanogaster

    Get PDF
    Production of specialized cells from precursors depends on a tightly regulated sequence of proliferation and differentiation steps. In the gonad of Drosophila melanogaster, the daughters of germ line stem cells (GSC) go through precisely four rounds of transit amplification divisions to produce clusters of 16 interconnected germ line cells before entering a stereotypic differentiation cascade. Here we show that animals harbouring a transposon insertion in the center of the complex nucleoporin98-96 (nup98-96) locus had severe defects in the early steps of this developmental program, ultimately leading to germ cell loss and sterility. A phenotypic analysis indicated that flies carrying the transposon insertion, designated nup98-962288, had dramatically reduced numbers of germ line cells. In contrast to controls, mutant testes contained many solitary germ line cells that had committed to differentiation as well as abnormally small clusters of two, four or eight differentiating germ line cells. This indicates that mutant GSCs rather differentiated than self-renewed, and that these GSCs and their daughters initiated the differentiation cascade after zero, or less than four rounds of amplification divisions. This phenotype remained unaffected by hyper-activation of signalling pathways that normally result in excessive proliferation of GSCs and their daughters. Expression of wildtype nup98-96 specifically in the germ line cells of mutant animals fully restored development of the GSC lineage, demonstrating that the effect of the mutation is cell-autonomous. Nucleoporins are the structural components of the nucleopore and have also been implicated in transcriptional regulation of specific target genes. The nuclear envelopes of germ cells and general nucleocytoplasmic transport in nup98-96 mutant animals appeared normal, leading us to propose that Drosophila nup98-96 mediates the transport or transcription of targets required for the developmental timing between amplification and differentiation

    Differential Requirement for Utrophin in the Induced Pluripotent Stem Cell Correction of Muscle versus Fat in Muscular Dystrophy Mice

    Get PDF
    Duchenne muscular dystrophy (DMD) is an incurable degenerative muscle disorder. We injected WT mouse induced pluripotent stem cells (iPSCs) into mdx and mdx∶utrophin mutant blastocysts, which are predisposed to develop DMD with an increasing degree of severity (mdx <<< mdx∶utrophin). In mdx chimeras, iPSC-dystrophin was supplied to the muscle sarcolemma to effect corrections at morphological and functional levels. Dystrobrevin was observed in dystrophin-positive and, at a lesser extent, utrophin-positive areas. In the mdx∶utrophin mutant chimeras, although iPSC-dystrophin was also supplied to the muscle sarcolemma, mice still displayed poor skeletal muscle histopathology, and negligible levels of dystrobrevin in dystrophin- and utrophin-negative areas. Not only dystrophin-expressing tissues are affected by iPSCs. Mdx and mdx∶utrophin mice have reduced fat/body weight ratio, but iPSC injection normalized this parameter in both mdx and mdx∶utrophin chimeras, despite the fact that utrophin was compromised in the mdx∶utrophin chimeric fat. The results suggest that the presence of utrophin is required for the iPSC-corrections in skeletal muscle. Furthermore, the results highlight a potential (utrophin-independent) non-cell autonomous role for iPSC-dystrophin in the corrections of non-muscle tissue like fat, which is intimately related to the muscle
    corecore