38 research outputs found

    Testing for differential abundance in mass cytometry data.

    Get PDF
    When comparing biological conditions using mass cytometry data, a key challenge is to identify cellular populations that change in abundance. Here, we present a computational strategy for detecting 'differentially abundant' populations by assigning cells to hyperspheres, testing for significant differences between conditions and controlling the spatial false discovery rate. Our method (http://bioconductor.org/packages/cydar) outperforms other approaches in simulations and finds novel patterns of differential abundance in real data.This work was supported by Cancer Research UK (core funding to J.C.M., award no. A17197), the University of Cambridge and Hutchison Whampoa Limited. J.C.M. was also supported by core funding from EMBL

    Single-cell analysis tools for drug discovery and development

    Get PDF
    The genetic, functional or compositional heterogeneity of healthy and diseased tissues presents major challenges in drug discovery and development. Such heterogeneity hinders the design of accurate disease models and can confound the interpretation of biomarker levels and of patient responses to specific therapies. The complex nature of virtually all tissues has motivated the development of tools for single-cell genomic, transcriptomic and multiplex proteomic analyses. Here, we review these tools and assess their advantages and limitations. Emerging applications of single cell analysis tools in drug discovery and development, particularly in the field of oncology, are discussed
    corecore