40 research outputs found

    An Updated Review of Interventions that Include Promotion of Physical Activity for Adult Men

    Get PDF
    The marked disparity in life expectancy between men and women suggests men are a vulnerable group requiring targeted health promotion programs. As such, there is an increasing need for health promotion strategies that effectively engage men with their health and/or illness management. Programs that promote physical activity could significantly improve the health of men. Although George et al. (Sports Med 42(3):281, 30) reviewed physical activity programs involving adult males published between 1990 and 2010, developments in men’s health have prompted the emergence of new sex- and gender-specific approaches targeting men. The purpose of this review was to: (1) extend and update the review undertaken by George et al. (Sports Med 42(3):281, 30) concerning the effectiveness of physical activity programs in males, and (2) evaluate the integration of gender-specific influences in the content, design, and delivery of men’s health promotion programs. A search of MEDLINE, CINAHL, ScienceDirect, Web of Science, PsycINFO, the Cochrane Library, and the SPORTDiscus databases for articles published between January 2010 and August 2014 was conducted. In total, 35 studies, involving evaluations of 31 programs, were identified. Findings revealed that a variety of techniques and modes of delivery could effectively promote physical activity among men. Though the majority of programs were offered exclusively to men, 12 programs explicitly integrated gender-related influences in male-specific programs in ways that recognized men’s interests and preferences. Innovations in male-only programs that focus on masculine ideals and gender influences to engage men in increasing their physical activity hold potential for informing strategies to promote other areas of men’s health

    Exploring molecular variation in Schistosoma japonicum in China

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Polymorphisms at the F12 and KLKB1 loci have significant trait association with activation of the renin-angiotensin system

    Get PDF
    BACKGROUND: Plasma coagulation Factor XIIa (Hageman factor; encoded by F12) and kallikrein (KAL or Fletcher factor; encoded by KLKB1) are proteases of the kallikerin-kinin system involved in converting the inactive circulating prorenin to renin. Renin is a key enzyme in the formation of angiotensin II, which regulates blood pressure, fluid and electrolyte balance and is a biomarker for cardiovascular, metabolic and renal function. The renin-angiotensin system is implicated in extinction learning in posttraumatic stress disorder. METHODS & RESULTS: Active plasma renin was measured from two independent cohorts- civilian twins and siblings, as well as U.S. Marines, for a total of 1,180 subjects. Genotyping these subjects revealed that the carriers of the minor alleles at the two loci- F12 and KLKB1 had a significant association with reduced levels of active plasma renin. Meta-analyses confirmed the association across cohorts. In vitro studies verified digestion of human recombinant pro-renin by kallikrein (KAL) to generate active renin. Subsequently, the active renin was able to digest the synthetic substrate angiotensinogen to angiotensin-I. Examination of mouse juxtaglomerular cell line and mouse kidney sections showed co-localization of KAL with renin. Expression of either REN or KLKB1 was regulated in cell line and rodent models of hypertension in response to oxidative stress, interleukin or arterial blood pressure changes. CONCLUSIONS: The functional variants of KLKB1 (rs3733402) and F12 (rs1801020) disrupted the cascade of enzymatic events, resulting in diminished formation of active renin. Using genetic, cellular and molecular approaches we found that conversion of zymogen prorenin to renin was influenced by these polymorphisms. The study suggests that the variant version of protease factor XIIa due to the amino acid substitution had reduced ability to activate prekallikrein to KAL. As a result KAL has reduced efficacy in converting prorenin to renin and this step of the pathway leading to activation of renin affords a potential therapeutic target

    Assessment of renin dependency of hypertension with a dipeptide renin inhibitor.

    No full text
    corecore