24 research outputs found
Variation in grain Zn concentration, and the grain ionome, in field-grown Indian wheat
Wheat is an important dietary source of zinc (Zn) and other mineral elements in many countries. Dietary Zn deficiency is widespread, especially in developing countries, and breeding (genetic biofortification) through the HarvestPlus programme has recently started to deliver new wheat varieties to help alleviate this problem in South Asia. To better understand the potential of wheat to alleviate dietary Zn deficiency, this study aimed to characterise the baseline effects of genotype (G), site (E), and genotype by site interactions (GxE) on grain Zn concentration under a wide range of soil conditions in India. Field experiments were conducted on a diverse panel of 36 Indian-adapted wheat genotypes, grown on a range of soil types (pH range 4.5–9.5), in 2013–14 (five sites) and 2014–15 (six sites). Grain samples were analysed using inductively coupled plasma-mass spectrometry (ICP-MS). The mean grain Zn concentration of the genotypes ranged from 24.9–34.8 mg kg-1, averaged across site and year. Genotype and site effects were associated with 10% and 6% of the overall variation in grain Zn concentration, respectively. Whilst G x E interaction effects were evident across the panel, some genotypes had consistent rankings between sites and years. Grain Zn concentration correlated positively with grain concentrations of iron (Fe), sulphur (S), and eight other elements, but did not correlate negatively with grain yield, i.e. no yield dilution was observed. Despite a relatively small contribution of genotype to the overall variation in grain Zn concentration, due to experiments being conducted across many contrasting sites and two years, our data are consistent with reports that biofortifying wheat through breeding is likely to be effective at scale given that some genotypes performed consistently across diverse soil types. Notably, all soils in this study were probably Zn deficient and interactions between wheat genotypes and soil Zn availability/management (e.g. the use of Zn-containing fertilisers) need to be better-understood to improve Zn supply in food systems
Crossing the boundaries of genre studies: Commentaries by experts
link_to_subscribed_fulltex
Effect of exotic mammalian predators on parasites of Cory's shearwater: ecological effect on population health and breeding success
© Springer-Verlag Berlin Heidelberg 2013. This document is the Published version of a Published Work that appeared in final form in Parasitology Research. To access the final edited and published work see https://doi.org/10.1007/s00436-013-3443-yPredator activity around the nests induces stress in breeding birds, which may have weaker immunity and are
therefore more susceptible to parasite infections. The influence of predators on parasites has only been observed in land birds, and most studies are experimental. As seabird colonies offer excellent conditions for parasites, here we assess the influence of mouse, rat, and cat activity on parasites in Cory's shearwater (Calonectris diomedea borealis). Adults were examined for blood parasites and one adult and the juvenile from 53 nests were inspected for ectoparasites over two consecutive years (2010 and 2011). Nests differed in their physical characteristics and indices of mammal predator activity and were checked weekly to assess breeding
success. Our results showed absence of blood parasites. Among the environmental factors, predator pressure received the most support (89 %) from the data as influencing nest ectoparasite intensity. Birds most infected had worse body condition, and breeding success was negatively influenced by predator activity and ectoparasite intensity. To our knowledge, this is the first analysis of the interaction between mammal predators and ectoparasites in seabird species and supports greater protection through eradication efforts. In addition, we provide the first data on the endoparasite fauna of Cory's shearwater
Dry-season changes in macroinvertebrate assemblages of highly seasonal rivers: responses to low flow, no flow and antecedent hydrology
Highly seasonal rivers can experience extended low flow, and often dry, periods. Macroinvertebrate and flow data were used to explore hypotheses on the effects of antecedent hydrology and the low-flow, dry-season period on macroinvertebrate assemblages in northern Australia. Composition differed between early and late dry seasons. Taxa were more sensitive to water quality and more rheophilous in the early dry season when their habitats were lotic than when habitats later became lentic. As flow magnitudes in the antecedent dry season and on the sampling day increased, the habitats became more oxygenated and, in turn, macroinvertebrate richness increased. Higher wet-season flow magnitudes, flow variability and rates of fall were correlated with lower richness in the following dry season. Alteration of the flow-disturbance regime that increases the likelihood of flow cessation in macroinvertebrate habitats, or extends the duration of the dry season beyond that previously experienced in these highly seasonal systems, may alter the resistance and resilience of assemblages such that the seasonal decline and recovery of biodiversity may no longer be so reliable. Given the projected increase in low-flow incidence in many regions of the world, future research needs to examine the effects of reduced flow, flow cessation and stream drying as multiple, interacting stressors on stream biota.Griffith Sciences, Griffith School of EnvironmentFull Tex