185 research outputs found

    Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae

    Get PDF
    The implementation of successful insecticide resistance management strategies for malaria control is currently hampered by poor understanding of the fitness cost of resistance on mosquito populations, including their mating competiveness. To fill this knowledge gap, coupled and uncoupled Anopheles gambiae s.l. males (all M form (Anopheles coluzzii)) were collected from mating swarms in Burkina Faso. This multiple insecticide resistant population exhibited high 1014F kdrR allele frequencies (460%) and RDLR (480%) in contrast to the Ace-1R allele (o6%). Kdr heterozygote males were more likely to mate than homozygote resistant (OR=2.36; Po0.001), suggesting a negative impact of kdr on An. coluzzii mating ability. Interestingly, heterozygote males were also more competitive than homozygote susceptible (OR=3.26; P=0.006), suggesting a heterozygote advantage effect. Similarly, heterozygote RDLR/RDLS were also more likely to mate than homozygote-resistant males (OR=2.58; P=0.007). Furthermore, an additive mating disadvantage was detected in male homozygotes for both kdr/RDL-resistant alleles. In contrast, no fitness difference was observed for the Ace-1 mutation. Comparative microarray-based genome-wide transcription analysis revealed that metabolic resistance did not significantly alter the mating competitiveness of male An. coluzzii mosquitoes. Indeed, no significant difference of expression levels was observed for the main metabolic resistance genes, suggesting that metabolic resistance has a limited impact on male mating competiveness. In addition, specific gene classes/GO terms associated with mating process were detected including sensory perception and peroxidase activity. The detrimental impact of insecticide resistance on mating competiveness observed here suggests that resistance management strategies such as insecticide rotation could help reverse the resistance, if implemented early

    Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    Get PDF
    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3Γ—720 K Whole Genome and CNV focused arrays, the Agilent 1Γ—1 M CGH and High Resolution and 2Γ—400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications

    A Computational Framework Discovers New Copy Number Variants with Functional Importance

    Get PDF
    Structural variants which cause changes in copy numbers constitute an important component of genomic variability. They account for 0.7% of genomic differences in two individual genomes, of which copy number variants (CNVs) are the largest component. A recent population-based CNV study revealed the need of better characterization of CNVs, especially the small ones (<500 bp).We propose a three step computational framework (Identification of germline Changes in Copy Number or IgC2N) to discover and genotype germline CNVs. First, we detect candidate CNV loci by combining information across multiple samples without imposing restrictions to the number of coverage markers or to the variant size. Secondly, we fine tune the detection of rare variants and infer the putative copy number classes for each locus. Last, for each variant we combine the relative distance between consecutive copy number classes with genetic information in a novel attempt to estimate the reference model bias. This computational approach is applied to genome-wide data from 1250 HapMap individuals. Novel variants were discovered and characterized in terms of size, minor allele frequency, type of polymorphism (gains, losses or both), and mechanism of formation. Using data generated for a subset of individuals by a 42 million marker platform, we validated the majority of the variants with the highest validation rate (66.7%) was for variants of size larger than 1 kb. Finally, we queried transcriptomic data from 129 individuals determined by RNA-sequencing as further validation and to assess the functional role of the new variants. We investigated the possible enrichment for variant's regulatory effect and found that smaller variants (<1 Kb) are more likely to regulate gene transcript than larger variants (p-valueβ€Š=β€Š2.04e-08). Our results support the validity of the computational framework to detect novel variants relevant to disease susceptibility studies and provide evidence of the importance of genetic variants in regulatory network studies

    ATP-dependent chromatin remodeling shapes the DNA replication landscape.

    Get PDF
    The eukaryotic DNA replication machinery must traverse every nucleosome in the genome during S phase. As nucleosomes are generally inhibitory to DNA-dependent processes, chromatin structure must undergo extensive reorganization to facilitate DNA synthesis. However, the identity of chromatin-remodeling factors involved in replication and how they affect DNA synthesis is largely unknown. Here we show that two highly conserved ATP-dependent chromatin-remodeling complexes in Saccharomyces cerevisiae, Isw2 and Ino80, function in parallel to promote replication fork progression. As a result, Isw2 and Ino80 have especially important roles for replication of late-replicating regions during periods of replication stress. Both Isw2 and Ino80 complexes are enriched at sites of replication, suggesting that these complexes act directly to promote fork progression. These findings identify ATP-dependent chromatin-remodeling complexes that promote DNA replication and define a specific stage of replication that requires remodeling for normal function

    Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee

    Get PDF
    In ecosystems, a variety of biological, chemical and physical stressors may act in combination to induce illness in populations of living organisms. While recent surveys reported that parasite-insecticide interactions can synergistically and negatively affect honeybee survival, the importance of sequence in exposure to stressors has hardly received any attention. In this work, Western honeybees (Apis mellifera) were sequentially or simultaneously infected by the microsporidian parasite Nosema ceranae and chronically exposed to a sublethal dose of the insecticide fipronil, respectively chosen as biological and chemical stressors. Interestingly, every combination tested led to a synergistic effect on honeybee survival, with the most significant impacts when stressors were applied at the emergence of honeybees. Our study presents significant outcomes on beekeeping management but also points out the potential risks incurred by any living organism frequently exposed to both pathogens and insecticides in their habitat

    A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).</p> <p>Results</p> <p>Using a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.</p> <p>Conclusion</p> <p>These results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.</p

    The Genetics of Obesity

    Get PDF
    Obesity is a result of excess body fat accumulation. This excess is associated with adverse health effects such as CVD, type 2 diabetes, and cancer. The development of obesity has an evident environmental contribution, but as shown by heritability estimates of 40% to 70%, a genetic susceptibility component is also needed. Progress in understanding the etiology has been slow, with findings largely restricted to monogenic, severe forms of obesity. However, technological and analytical advances have enabled detection of more than 20 obesity susceptibility loci. These contain genes suggested to be involved in the regulation of food intake through action in the central nervous system as well as in adipocyte function. These results provide plausible biological pathways that may, in the future, be targeted as part of treatment or prevention strategies. Although the proportion of heritability explained by these genes is small, their detection heralds a new phase in understanding the etiology of common obesity

    Misregulation of Scm3p/HJURP Causes Chromosome Instability in Saccharomyces cerevisiae and Human Cells

    Get PDF
    The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability
    • …
    corecore