42 research outputs found
Histone Deacetylase Inhibitors Globally Enhance H3/H4 Tail Acetylation Without Affecting H3 Lysine 56 Acetylation
Histone deacetylase inhibitors (HDACi) represent a promising avenue for cancer therapy. We applied mass spectrometry (MS) to determine the impact of clinically relevant HDACi on global levels of histone acetylation. Intact histone profiling revealed that the HDACi SAHA and MS-275 globally increased histone H3 and H4 acetylation in both normal diploid fibroblasts and transformed human cells. Histone H3 lysine 56 acetylation (H3K56ac) recently elicited much interest and controversy due to its potential as a diagnostic and prognostic marker for a broad diversity of cancers. Using quantitative MS, we demonstrate that H3K56ac is much less abundant than previously reported in human cells. Unexpectedly, in contrast to H3/H4 N-terminal tail acetylation, H3K56ac did not increase in response to inhibitors of each class of HDACs. In addition, we demonstrate that antibodies raised against H3K56ac peptides cross-react against H3 N-terminal tail acetylation sites that carry sequence similarity to residues flanking H3K56
Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis
A comprehensive literature search was performed to collate evidence of mitochondrial dysfunction in autism spectrum disorders (ASDs) with two primary objectives. First, features of mitochondrial dysfunction in the general population of children with ASD were identified. Second, characteristics of mitochondrial dysfunction in children with ASD and concomitant mitochondrial disease (MD) were compared with published literature of two general populations: ASD children without MD, and non-ASD children with MD. The prevalence of MD in the general population of ASD was 5.0% (95% confidence interval 3.2, 6.9%), much higher than found in the general population (∼0.01%). The prevalence of abnormal biomarker values of mitochondrial dysfunction was high in ASD, much higher than the prevalence of MD. Variances and mean values of many mitochondrial biomarkers (lactate, pyruvate, carnitine and ubiquinone) were significantly different between ASD and controls. Some markers correlated with ASD severity. Neuroimaging, in vitro and post-mortem brain studies were consistent with an elevated prevalence of mitochondrial dysfunction in ASD. Taken together, these findings suggest children with ASD have a spectrum of mitochondrial dysfunction of differing severity. Eighteen publications representing a total of 112 children with ASD and MD (ASD/MD) were identified. The prevalence of developmental regression (52%), seizures (41%), motor delay (51%), gastrointestinal abnormalities (74%), female gender (39%), and elevated lactate (78%) and pyruvate (45%) was significantly higher in ASD/MD compared with the general ASD population. The prevalence of many of these abnormalities was similar to the general population of children with MD, suggesting that ASD/MD represents a distinct subgroup of children with MD. Most ASD/MD cases (79%) were not associated with genetic abnormalities, raising the possibility of secondary mitochondrial dysfunction. Treatment studies for ASD/MD were limited, although improvements were noted in some studies with carnitine, co-enzyme Q10 and B-vitamins. Many studies suffered from limitations, including small sample sizes, referral or publication biases, and variability in protocols for selecting children for MD workup, collecting mitochondrial biomarkers and defining MD. Overall, this evidence supports the notion that mitochondrial dysfunction is associated with ASD. Additional studies are needed to further define the role of mitochondrial dysfunction in ASD
Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture
HDAC 阻害剤は Diethylstilbestrol による性腺刺激ホルモン細胞からのプロラクチン細胞への分化転換を抑制する
Diethylstilbestrol (DES), an estrogen agonist, increases prolactin (PRL) cells through transdifferentiation of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) cells to PRL cells as well as proliferation of PRL cells in adult male mouse pituitary. Since hyperacetylation of histone H3 is implicated in the regulation of activation of various genes, we examined the effect of DES on the state of histone H3 acetylation. DES significantly reduced the immunohistochemical signal for acetylated histone H3 at lysine 9 (H3K9ac) in PRL, LH and FSH cells, but not for H3K18ac or H3K23ac. DES-treated mice were injected intraperitoneally with HDAC inhibitors (HDACi), sodium phenylbutyrate (NaPB) or valproic acid (VPA), to mimic the acetylation level of histone H3. As expected, HDACi treatment restored the level of H3K9ac expression in these cells, and also inhibited DES-induced increase in PRL cells. Furthermore, NaPB and VPA also abrogated the effects of DES on the population density of both LH and FSH cells. Similarly, the numbers of proliferating and apoptotic cells in the pituitary in NaPB- or VPA-treated mice were comparable to those of the control mice. Considered together, these results indicated that the acetylation level of histone H3 plays an important role in DES-induced transdifferentiation of LH to PRL cells as well as proliferation of PRL cells.長崎大学学位論文 学位記番号:博(医歯薬)甲第1128号 学位授与年月日:平成31年3月20日Author: Nandar Tun, Yasuaki Shibata, Myat Thu Soe, Myo Win Htun, Takehiko KojiCitation: Histochemistry and Cell Biology, 151(4), pp.291-303; 2018Nagasaki University (長崎大学)課程博
Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites
The faujasite-type of zeolites (NaX and NaY) and NaA-type of zeolite were synthesized from rice husk ash (RHA) via the hydrothermal conditions. The combustion of rice husk at controlled temperature of 600 °C for an hour in open air produce more than 90% of amorphous silica in the ash which was reactive towards the synthesis of zeolites. The formation of zeolite NaY from RHA is metastable and thus, the seeding and ageing effects in the synthesis of zeolite NaY were investigated to avoid the formation of zeolite A or P as the impurities in zeolite NaY. Zeolites NaX and NaA were also successfully synthesized with high purity, absence of impurities and other phases, and high reproducibility. Thus, the amorphous forms of silica in RHA can be used as a source of silica for the synthesis of faujasite-types and NaA-type of zeolites