14,935 research outputs found

    Efficient graphene-based photodetector with two cavities

    Get PDF
    We present an efficient graphene-based photodetector with two Fabri-P\'erot cavities. It is shown that the absorption can reach almost 100% around a given frequency, which is determined by the two-cavity lengths. It is also shown that hysteresis in the absorbance is possible, with the transmittance amplitude of the mirrors working as an external driving field. The role of non-linear contributions to the optical susceptibility of graphene is discussed.Comment: 10 pages, 8 figures. published version: minor revisio

    Potencial de populações de coqueiro gigante no meio-norte do Brasil para produção de biocombustíveis.

    Get PDF
    bitstream/CPATC/19785/1/f_23_2007.pd

    Experimental investigation of quantum key distribution with position and momentum of photon pairs

    Full text link
    We investigate the utility of Einstein-Podolsky-Rosen correlations of the position and momentum of photon pairs from parametric down-conversion in the implementation of a secure quantum key distribution protocol. We show that security is guaranteed by the entanglement between downconverted pairs, and can be checked by either direct comparison of Alice and Bob's measurement results or evaluation of an inequality of the sort proposed by Mancini et al. (Phys. Rev. Lett. 88, 120401 (2002)).Comment: 6 pages, 6 figures, subimitted for publicatio

    The Apparent Fractal Conjecture: Scaling Features in Standard Cosmologies

    Full text link
    This paper presents an analysis of the smoothness problem in cosmology by focussing on the ambiguities originated in the simplifying hypotheses aimed at observationally verifying if the large-scale distribution of galaxies is homogeneous, and conjecturing that this distribution should follow a fractal pattern in perturbed standard cosmologies. This is due to a geometrical effect, appearing when certain types of average densities are calculated along the past light cone. The paper starts reviewing the argument concerning the possibility that the galaxy distribution follows such a scaling pattern, and the premises behind the assumption that the spatial homogeneity of standard cosmology can be observable. Next, it is argued that to discuss observable homogeneity one needs to make a clear distinction between local and average relativistic densities, and showing how the different distance definitions strongly affect them, leading the various average densities to display asymptotically opposite behaviours. Then the paper revisits Ribeiro's (1995: astro-ph/9910145) results, showing that in a fully relativistic treatment some observational average densities of the flat Friedmann model are not well defined at z ~ 0.1, implying that at this range average densities behave in a fundamentally different manner as compared to the linearity of the Hubble law, well valid for z < 1. This conclusion brings into question the widespread assumption that relativistic corrections can always be neglected at low z. It is also shown how some key features of fractal cosmologies can be found in the Friedmann models. In view of those findings, it is suggested that the so-called contradiction between the cosmological principle, and the galaxy distribution forming an unlimited fractal structure, may not exist.Comment: 30 pages, 2 figures, LaTeX. This paper is a follow-up to gr-qc/9909093. Accepted for publication in "General Relativity and Gravitation

    Marcadores morfológicos em coqueiros (Cocos nucifera L.): coloracão do coleto.

    Get PDF
    Os marcadores de coloracao do coleto da plantula do coqueiro sao utilizados na certificacao de cruzamentos, baseado na heranca genetica das cores amarela, verde e marrom do coqueiro. Sua adequacao na certificacao e questionada.bitstream/item/44464/1/CPATC-DOCUMENTOS-7-MARCADORES-MORFOLOGICOS-EM-COQUEIROS-COCOS-NUCIFERA-L-COLORACAO-DO-COLETO-FL-1.pd

    Differential Density Statistics of Galaxy Distribution and the Luminosity Function

    Get PDF
    This paper uses data obtained from the galaxy luminosity function (LF) to calculate two types of radial number densities statistics of the galaxy distribution as discussed in Ribeiro (2005), namely the differential density γ\gamma and the integral differential density γ\gamma^\ast. By applying the theory advanced by Ribeiro and Stoeger (2003), which connects the relativistic cosmology number counts with the astronomically derived LF, the differential number counts dN/dzdN/dz are extracted from the LF and used to calculate both γ\gamma and γ\gamma^\ast with various cosmological distance definitions, namely the area distance, luminosity distance, galaxy area distance and redshift distance. LF data are taken from the CNOC2 galaxy redshift survey and γ\gamma and γ\gamma^\ast are calculated for two cosmological models: Einstein-de Sitter and an Ωm0=0.3\Omega_{m_0}=0.3, ΩΛ0=0.7\Omega_{\Lambda_0}=0.7 standard cosmology. The results confirm the strong dependency of both statistics on the distance definition, as predicted in Ribeiro (2005), as well as showing that plots of γ\gamma and γ\gamma^\ast against the luminosity and redshift distances indicate that the CNOC2 galaxy distribution follows a power law pattern for redshifts higher than 0.1. These findings bring support to Ribeiro's (2005) theoretical proposition that using different cosmological distance measures in statistical analyses of galaxy surveys can lead to significant ambiguity in drawing conclusions about the behavior of the observed large scale distribution of galaxies.Comment: LaTeX, 37 pages, 6 tables, 10 figures. Accepted for publication in "The Astrophysical Journal

    Confining potential in a color dielectric medium with parallel domain walls

    Get PDF
    We study quark confinement in a system of two parallel domain walls interpolating different color dielectric media. We use the phenomenological approach in which the confinement of quarks appears considering the QCD vacuum as a color dielectric medium. We explore this phenomenon in QCD_2, where the confinement of the color flux between the domain walls manifests, in a scenario where two 0-branes (representing external quark and antiquark) are connected by a QCD string. We obtain solutions of the equations of motion via first-order differential equations. We find a new color confining potential that increases monotonically with the distance between the domain walls.Comment: RevTex4, 5 pages, 1 figure; version to appear in Int. J. Mod. Phys.

    Distortion of the perfect lattice structure in bilayer graphene

    Full text link
    We consider the instability of bilayer graphene with respect to a distorted configuration in the same spirit as the model introduced by Su, Schrieffer and Heeger. By computing the total energy of a distorted bilayer, we conclude that the ground state of the system favors a finite distortion. We explore how the equilibrium configuration changes with carrier density and an applied potential difference between the two layers

    Entropy and holography constraints for inhomogeneous universes

    Get PDF
    We calculated the entropy of a class of inhomogeneous dust universes. Allowing spherical symmetry, we proposed a holographic principle by reflecting all physical freedoms on the surface of the apparent horizon. In contrast to flat homogeneous counterparts, the principle may break down in some models, though these models are not quite realistic. We refined fractal parabolic solutions to have a reasonable entropy value for the present observable universe and found that the holographic principle always holds in the realistic cases.Comment: 4 pages, revtex style, 3 figures in 8 eps-file
    corecore