124 research outputs found

    Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms

    Get PDF
    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.National Institute of Dental & Craniofacial ResearchFundação para a Ciência e Tecnologia (FCT) - SFRH/BD/28222/2006National Institute of Allergy and Infectious Disease

    Contribution of Cell Elongation to the Biofilm Formation of Pseudomonas aeruginosa during Anaerobic Respiration

    Get PDF
    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2−) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process

    One size doesn’t fit all: cross-sectional associations between neighborhood walkability, crime and physical activity depends on age and sex of residents

    Full text link
    Abstract Background Low-income African American adults are disproportionately affected by obesity and are also least likely to engage in recommended levels of physical activity (Flegal et al. JAMA 303(3):235-41, 2010; Tucker et al. Am J Prev Med 40(4):454-61, 2011). Moderate-to-vigorous physical activity (MVPA) is an important factor for weight management and control, as well as for reducing disease risk (Andersen et al. Lancet 368(9532):299-304, 2006; Boreham and Riddoch J Sports Sci 19(12):915-29, 2001; Carson et al. PLoS One 8(8):e71417, 2013). While neighborhood greenspace and walkability have been associated with increased MVPA, evidence also suggests that living in areas with high rates of crime limits MVPA. Few studies have examined to what extent the confluence of neighborhood greenspace, walkability and crime might impact MVPA in low-income African American adults nor how associations may vary by age and sex. Methods In 2013 we collected self-reported data on demographics, functional limitations, objective measures of MVPA (accelerometry), neighborhood greenspace (geographic information system), and walkability (street audit) in 791 predominantly African-American adults (mean age 56 years) living in two United States (U.S.) low-income neighborhoods. We also acquired data from the City of Pittsburgh on all crime events within both neighborhoods. Exposure: To examine cross-sectional associations of neighborhood-related variables (i.e., neighborhood greenspace, walkability and crime) with MVPA, we used zero-inflated negative binomial regression models. Additionally, we examined potential interactions by age (over 65 years) and sex on relationships between neighborhood variables and MVPA. Results Overall, residents engaged in very little to no MVPA regardless of where they lived. However, for women, but not men, under the age of 65 years, living in more walkable neighborhoods was associated with more time engaged in MVPA in (β = 0.55, p = 0.007) as compared to their counterparts living in less walkable areas. Women and men age 65 years and over spent very little time participating in MVPA regardless of neighborhood walkability. Neither greenspace nor crime was associated with MVPA in age-sex subgroups. Conclusions Neighborhood walkability may play a stronger role on MVPA than accessible greenspace or crime in low-income urban communities. Walkability may differentially impact residents depending on their age and sex, which suggests tailoring public health policy design and implementation according to neighborhood demographics to improve activity for all.http://deepblue.lib.umich.edu/bitstream/2027.42/135725/1/12889_2016_Article_3959.pd

    Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits

    Get PDF
    Chlorine and sulfur are of paramount importance for supporting the transport and deposition of ore metals at magmatic–hydrothermal systems such as the Coroccohuayco Fe–Cu–Au porphyry–skarn deposit, Peru. Here, we used recent partitioning models to determine the Cl and S concentration of the melts from the Coroccohuayco magmatic suite using apatite and amphibole chemical analyses. The pre-mineralization gabbrodiorite complex hosts S-poor apatite, while the syn- and post-ore dacitic porphyries host S-rich apatite. Our apatite data on the Coroccohuayco magmatic suite are consistent with an increasing oxygen fugacity (from the gabbrodiorite complex to the porphyries) causing the dominant sulfur species to shift from S2− to S6+ at upper crustal pressure where the magmas were emplaced. We suggest that this change in sulfur speciation could have favored S degassing, rather than its sequestration in magmatic sulfides. Using available partitioning models for apatite from the porphyries, pre-degassing S melt concentration was 20–200 ppm. Estimates of absolute magmatic Cl concentrations using amphibole and apatite gave highly contrasting results. Cl melt concentrations obtained from apatite (0.60 wt% for the gabbrodiorite complex; 0.2–0.3 wt% for the porphyries) seems much more reasonable than those obtained from amphibole which are very low (0.37 wt% for the gabbrodiorite complex; 0.10 wt% for the porphyries). In turn, relative variations of the Cl melt concentrations obtained from amphibole during magma cooling are compatible with previous petrological constraints on the Coroccohuayco magmatic suite. This confirms that the gabbrodioritic magma was initially fluid undersaturated upon emplacement, and that magmatic fluid exsolution of the gabbrodiorite and the pluton rooting the porphyry stocks and dikes were emplaced and degassed at 100–200 MPa. Finally, mass balance constraints on S, Cu and Cl were used to estimate the minimum volume of magma required to form the Coroccohuayco deposit. These three estimates are remarkably consistent among each other (ca. 100 km3) and suggest that the Cl melt concentration is at least as critical as that of Cu and S to form an economic mineralization

    Maternal smoking during pregnancy and birth defects in children: a systematic review with meta-analysis

    Full text link
    corecore