166 research outputs found

    Assessment of the interaction of Portland cement-based materials with blood and tissue fluids using an animal model

    Get PDF
    Portland cement used in the construction industry improves its properties when wet. Since most dental materials are used in a moist environment, Portland cement has been developed for use in dentistry. The first generation material is mineral trioxide aggregate (MTA), used in surgical procedures, thus in contact with blood. The aim of this study was to compare the setting of MTA in vitro and in vivo in contact with blood by subcutaneous implantation in rats. The tissue reaction to the material was also investigated. ProRoot MTA (Dentsply) was implanted in the subcutaneous tissues of Sprague-Dawley rats in opposite flanks and left in situ for 3 months. Furthermore the material was also stored in physiological solution in vitro. At the end of the incubation time, tissue histology and material characterization were performed. Surface assessment showed the formation of calcium carbonate for both environments. The bismuth was evident in the tissues thus showing heavy element contamination of the animal specimen. The tissue histology showed a chronic inflammatory cell infiltrate associated with the MTA. MTA interacts with the host tissues and causes a chronic inflammatory reaction when implanted subcutaneously. Hydration in vivo proceeds similarly to the in vitro model with some differences particularly in the bismuth oxide leaching patterns.peer-reviewe

    ROLE OF CHAPERONES IN HEALTHY BOWEL AND IBD.

    Get PDF
    The chaperoning system is the wole complement of chaperones, co-chaperones and chaperone cofactors of the body that preserves cell and tissue homeostasis. Its structural and/or functional defects can cause pathologic conditions, nemed chaperonopathies. Large bowel homeostasis includes a healthy status of the mucosal tissues and the microbiota. An alteration of one of them may determine, in turn, modifications of the other. Molecular chaperones of bacteria and human origin have been implicated in inflammatory bowel disease (IBD). In IBD chaperone levels usually increase and their cellular and subcellular loclization change. This is considered a physiological stress-response of mucosal cells to inflammation. However, chaperones also play active roles in IBD pathogenesis, e.g. perpetuate inflammation. Therefore, IBD can be classified among the chaperonopathies. This classification opens the door to the design and application of new forms of treatment targeting the chaperones, namely chaperonopathy

    CD1A-positive cells and HSP60 (HSPD1) levels in keratoacanthoma and squamous cell carcinoma

    Get PDF
    CD1a is involved in presentation to the immune system of lipid antigen derived from tumor cells with subsequent T cell activation. Hsp60 is a molecular chaperone implicated in carcinogenesis by, for instance, modulating the immune reaction against the tumor. We have previously postulated a synergism between CD1a and Hsp60 as a key factor in the activation of an effective antitumor immune response in squamous epithelia. Keratoacantomas (KAs) are benign tumors that however can transform into squamous cell carcinomas (SCCs), but the reasons for this malignization are unknown. In a previous study, we found that CD1a-positive cells are significantly more numerous in KA than in SCC. In this study, we analyzed a series of KAs and SCCs by immunohistochemistry for CD1a and Hsp60. Our results show that the levels of both are significantly lower in KA than in SCC and support the hypothesis that KA may evolve towards SCC if there is a failure of the local modulation of the antitumor immune response. The data also show that immunohistochemistry for CD1a and Hsp60 can be of help in differential diagnosis between KAs and well-differentiated forms of SCC

    Biological aggressiveness evaluation in prostate carcinomas: Immunohistochemical analysis of PCNA and p53 in a series of Gleason 6 (3+3) adenocarcinomas

    Get PDF
    We selected 63 prostate tumors with Gleason's grade 6 (3+3), commonly showing both tubular and cribrous patterns. We compared in both patterns the expression of two of the most used biologic markers: PCNA and p53, with the aim to verify the validity of the Gleason's grading system to compare the morphologic grade with biologic aggressiveness and prognostic value. We did not find any statistical difference in the protein immunopositivity, indicating that both patterns could have identical biologic behaviour; then we confirmed the validity of Gleason's system for considering both tubular and cribrous patterns as an intermediate grade of tumoral differentiation. Moreover, we found a linear relationship between the increase of PCNA and the accumulation of mutated p53; this datum could confirm the hypothesis that p53 mutation is a late event in prostate carcinogenesis

    Lack of Dystrophin Affects Bronchial Epithelium in mdx Mice

    Get PDF
    Mild exercise training may positively affect the course of Duchenne Muscular Dystrophy (DMD). Training causes mild bronchial epithelial injury in both humans and mice, but no study assessed the effects of exercise in mdx mice, a well known model of DMD. The airway epithelium was examined in mdx (C57BL/10ScSn-Dmdmdx) mice, and in wild type (WT, C57BL/10ScSc) mice either under sedentary conditions (mdx-SD, WT-SD) or during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days of training (5 d/wk for 6 weeks), epithelial morphology and markers of regeneration, apoptosis, and cellular stress were assessed. The number of goblet cells in bronchial epithelium was much lower in mdx than in WT mice under all conditions. At 30 days, epithelial regeneration (PCNA positive cells) was higher in EX than SD animals in both groups; however, at 45 days, epithelial regeneration decreased in mdx mice irrespective of training, and the percentage of apoptotic (TUNEL positive) cells was higher in mdx-EX than in WT-EX mice. Epithelial expression of HSP60 (marker of stress) progressively decreased, and inversely correlated with epithelial apoptosis (r=-0.66, P=0.01) only in mdx mice. Lack of dystrophin in mdx mice appears associated with defective epithelial differentiation, and transient epithelial regeneration during mild exercise training. Hence, lack of dystrophin might impair repair in bronchial epithelium, with potential clinical consequences in DMD patients

    Gut dysbiosis and adaptive immune response in diet-induced obesity vs. Systemic inflammation

    Get PDF
    A mutual interplay exists between adaptive immune system and gut microbiota. Altered gut microbial ecosystems are associated with the metabolic syndrome, occurring in most obese individuals. However, it is unknown why 10-25% of obese individuals are metabolically healthy, while normal weight individuals can develop inflammation and atherosclerosis. We modeled these specific metabolic conditions in mice fed with a chow diet, an obesogenic but not inflammatory diet-mimicking healthy obesity, or Paigen diet-mimicking inflammation in the lean subjects. We analyzed a range of markers and cytokines in the aorta, heart, abdominal fat, liver and spleen, and metagenomics analyses were performed on stool samples. T lymphocytes infiltration was found in the aorta and in the liver upon both diets, however a significant increase in CD4+ and CD8+ cells was found only in the heart of Paigen-fed animals, paralleled by increased expression of IL-1, IL-4, IL-6, IL-17, and IFN-\u3b3. Bacteroidia, Deltaproteobacteria, and Verrucomicrobia dominated in mice fed Paigen diet, while Gammaproteobacteria, Delataproteobacteria, and Erysipelotrichia were more abundant in obese mice. Mice reproducing human metabolic exceptions displayed gut microbiota phylogenetically distinct from normal diet-fed mice, and correlated with specific adaptive immune responses. Diet composition thus has a pervasive role in co-regulating adaptive immunity and the diversity of microbiota
    corecore