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Abstract CD1a is involved in presentation to the immune sys-
tem of lipid antigen derived from tumor cells with subsequent T
cell activation. Hsp60 is a molecular chaperone implicated in
carcinogenesis by, for instance, modulating the immune reac-
tion against the tumor. We have previously postulated a syner-
gism between CD1a and Hsp60 as a key factor in the activation
of an effective antitumor immune response in squamous epi-
thelia. Keratoacantomas (KAs) are benign tumors that however
can transform into squamous cell carcinomas (SCCs), but the
reasons for this malignization are unknown. In a previous study,
we found that CD1a-positive cells are significantly more nu-
merous in KA than in SCC. In this study, we analyzed a series
of KAs and SCCs by immunohistochemistry for CD1a and
Hsp60. Our results show that the levels of both are significantly
lower in KA than in SCC and support the hypothesis that KA
may evolve towards SCC if there is a failure of the local mod-
ulation of the antitumor immune response. The data also show
that immunohistochemistry for CD1a and Hsp60 can be of help

in differential diagnosis between KAs and well-differentiated
forms of SCC.
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Introduction

KA is a relatively common crater-like squamo-proliferative
lesion clinically characterized by a rapid onset and usually
by spontaneous slow regression within months, if left untreat-
ed (Blessing et al. 1994). Sometimes, KA may be difficult to
distinguish from a well-differentiated SCC with a crateriform
architecture both clinically and histologically. In fact, some
forms of KA are defined Batypical^ due to the presence of
focal areas with some features overlapping those of SCC,
consisting of a higher degree of cytological atypia, a higher
nuclear/cytoplasmic ratio, several—sometimes atypical—mi-
tosis, and focal aspects of irregular infiltration at the deep
boundary level. SCC appears as a persistent, slow-growing,
non-healing lesion, with an inexorable progression character-
ized by local growth, tissue destruction, and even metastasis.
Despite the fact that KA and SCC have been considered to be
two separate entities (Mukunyadzi et al. 2002; Schwartz
2004), the presence of overlapping features and the possibility
of malignant transformation, especially in older patients and in
photoexposed areas (Sanchez et al. 2000), has recently led to
the hypothesis that the two neoplasias might well represent the
two extreme ends of the same spectrum, with forms of transi-
tion and possibility of evolution of KA toward SCC
(Fernandez-Flores 2005; Cabibi et al. 2011).
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Two fundamental issues in carcinogenesis are the mecha-
nism by which a normal cell becomes malignant and the bio-
markers that predict malignant progression.

Hsp60 (or HSPD1, Kampinga et al. 2009) is a molecular
chaperone localized mainly in mitochondria and, to a lesser
extent, in the cytosol (Itoh et al. 2002). Its classical role per-
tains to protein folding within mitochondria in association
with Hsp10 (Martin 1997). Hsp60 also controls cell prolifer-
ation and tumorigenesis by interacting with mitochondrial
Hsp70 (i.e., mortalin) and other tumor-related molecules
(Dundas et al. 2004; Wadhwa et al. 2005; Deocaris et al.
2006). A progressive increase in Hsp60 levels is associated
with progression from dysplasia to carcinoma in the carcino-
genesis process of the uterine exocervix (Cappello et al.
2002), large bowel (Cappello et al. 2003a, 2005a), and pros-
tate (Cappello et al. 2003b). When increased in tumor cells,
Hsp60 accumulates in the cytosol and is secreted via the
exosome and/or the Golgi pathways (Merendino et al. 2010;
Campanella et al. 2012). In contrast, Hsp60 levels progres-
sively decrease during bronchial (Cappello et al. 2005b,
2006a) and oral carcinogenesis (Ito et al. 1998) as well as
during bladder cancer progression (Lebret et al. 2003;
Cappello et al. 2006b), although the latter has not been con-
firmed by others (Romanucci et al. 2012). For these reasons,
Hsp60 has been dubbed as the Bmolecular proteus^ of carci-
nogenesis (Cappello and Zummo 2005): It has a dual behavior
changing it most likely as dictated by the tumor
microenvironment.

CD1a cells belong to the CD1 family and are involved in
self and foreign lipid antigen presentation to T cells (Vincent
et al. 2005). CD1a cells present lipid antigen derived from
apoptotic or necrotic cells occurring in the tumor microenvi-
ronment (Coventry and Heinzel 2004). The presence of
CD1a+ dendritic cells (DCs) infiltrating the tumor correlates
with a better prognosis in mammary (Hillebrand et al. 1999;
Bell et al. 1999; Treilleux et al. 2004; La Rocca et al. 2008),
oesophageal (Ikeguchi et al. 1998), and colorectal (Sandel
et al. 2005) cancers. CD1a+ tumor-infiltrating DCs can recog-
nize and process tumor antigens but to achieve full functional
efficiency, they migrate, after antigen endocytosis and pro-
cessing, into lymph nodes, in which their full maturation takes
place (Adam et al. 2003; Andrews et al. 2005). Previously, we
found that intratumoral and peritumoral CD1a cells are signif-
icantly more numerous in KA than in SCC (Cabibi et al.
2011). Moreover, in the past, we postulated a synergism be-
tween CD1a cells and Hsp60, which can activate cells of the
innate immune system, causing the release of Th1 cytokines,
as well act as a danger signal and promote maturation of DCs
(Corrao et al. 2008; Chen et al. 1999; Flohé et al. 2003).

Consequently, we asked the questions: What are the quan-
titative levels of Hsp60 in relation to those of CD1a cells in
KA? Can these levels help in identifying cases that progress to
the malignant SCC? Our prediction was that low Hsp60 levels

accompanied by low levels of CD1a cells would indicate ma-
lignant progression. The work reported here pertains to these
issues.

Materials and methods

We examined retrospectively 18 cases of KA and 12 cases of
SCC. All the cases were submitted to the Department of
Human Pathology of the University of Palermo from
January 1, 2012 to September 2, 2014. The age of the KA
patients ranged from 20 to 80 years (mean 62 years), the mean
tumor diameter was 0.93 cm (range 0.5–1.3 cm), and the time
from onset was on average 3 months (range 1–4 months). The
SCC patient’s age ranged from 50 to 90 years (mean 74 years),
the mean tumor diameter was 1.58 cm (range 0.3–4.5 cm), and
the time from onset was on average 31 months (range 1.5–38
months). The stored slides, stained with haematoxylin-eosin,
were re-evaluated by two pathologists (DC and FR). The SCC
cases were subdivided into two groups. One group consisted
of 8 cases of well differentiated or with an intermediate grade
of differentiation of SCC (SCC G1-G2); the other group
consisted of 4 cases of SCC with a low grade of differentia-
tion, i.e., greater malignancy (SCC G3).

This study was approved by the local ethics committee, and
informed consent was obtained from the patients before the
surgery. Immunohistochemistry was performed as described
(Cabibi et al. 2011) using the following primary antibodies:
anti-CD1a (monoclonal mouse antibody, clone 010, DAKO,
Carpinteria, CA, USA; dilution, 1:50) and anti-Hsp60 (mono-
clonal antibody, clone LK1, Sigma-Aldrich Inc., Milan, Italy;
dilution, 1:400). Immunohistochemical results were evaluated
by two experts (DC and FC) in a blind way, with coded slides.
Tissue positivity for Hsp60 was evaluated with a semi-
quantitative method as follows: score 3+=>70 % of positive
cells, score 2+=30–70% of positive cells, score 1+=10–29%
of positive cells, score 0=<10 % of positive cells. CD1a cells
were evaluated quantitatively as percentage of positive intra-
and peri-tumoral cells. Ten microscopic fields at ×200 magni-
fication for each slide were examined, and the arithmetic
means were considered for statistical analyses. Statistical anal-
yses were performed by using the software GraphPad Prisma
5. The positive cell distribution was compared in the 3 groups
(KA, SCC G1-G2, and SCC G3) by using the Mann–Whitney
U test. A p value ≤0.05 was considered significant.

Results

Both Hsp60 and CD1a cells were more abundant in KA than
in SCC. All KAs showed a score 3+ for Hsp60, and the mean
percentage of CD1a cells was 27 % (SD: 5.5). In SCC, Hsp60
levels were lower: all SCCs G1-G2 showed score 2+, while

D. Cabibi et al.



SCC G3 showed score 1+ (2 cases) and score 0 (2 cases).
Noteworthy, in SCC G2, Hsp60 showed a heterogeneous
quantitative distribution pattern, with positivity maintained
in some cells and reduced or absent in others, which generated
a mosaic designmade of cells differing in Hsp60 positivity but
otherwise similar, i.e., not showing any other morphological
differences (Figs. 1 and 2). In SCCs, CD1a cell levels were
reduced too (mean value=9.14 % SD 1.75) with statistically
significant difference between SCC and KA (p<0.05). In the
SCC patients, no significant differences were evident between
G1–G2 group and G3 group: G1–G2 cases showed 8.5 %
CD1a cells (SD: 1.25); G3 cases showed 9.75 % CD1a cells
(SD: 2.25) (Fig. 1). The results are graphically represented in
Fig. 3. Remarkably, when present within well-differentiated
subregions of a tumor, e.g., in SCC G3, the cells were signif-
icantly more positive for Hsp60 than those in the less differ-
entiated subregions of the same tumor. Similarly, in poorly
differentiated areas (G3 areas), occurring within a well-
differentiated SCC, the cells had lower levels of Hsp60 than
in the rest of the tumor (Fig. 4).

Discussion

Our data point to a simultaneous decrease in the levels of
Hsp60 and CD1a cells that would occur only in KAs that
progress to SCC, which makes this quantitative pattern a

marker of malignant progression. Tissue assessment of
Hsp60 and CD1a is easy to perform and could facilitate the
task of the pathologist as a useful adjunct in the diagnosis of
difficult, atypical cases of KA.

Investigations on the role of Hsp60-CD1a cells interplay in
carcinogenesis pertaining to KA ought to consider what is
already known on this very topic and what is still obscure.
For instance, the mechanisms initiating KA and its progres-
sion to SCC are still unclear. Epidemiological studies have
indicated that risk factors for KA include sun exposure, chem-
ical carcinogens, viruses, cutaneous infection, and trauma. KA
has been reported to occur in sites of previous cryotherapy,
topical photodynamic and UV therapies, megavoltage radio-
therapy, split skin graft donor, excisional surgery scars, and
tattoos (Swaw et al. 1990; Hendricks and Sudden 1991; Pattee
and Silvis 2003; Craddock et al. 2004; Kimyai-Asadi et al.
2004; Maydan et al. 2006; Brazzelli et al. 2006; Kaptanoglu
and Kutluay 2006; Kluger et al. 2008). Many of these proce-
dures are considered to cause local stress that induces Hsp60
overexpression (Jalili et al. 2004; Singh et al. 2009;
Henderson 2010). Hsp60 accumulates not only in tumor cells
but often also in pre-tumor dysplastic lesions, such as the
squamous intraepithelial lesion of exocervix (Cappello et al.
2002). When accumulated inside a cell, Hsp60 can be actively
released by the cell into the extracellular space and circulation
and, thus, elicit an immune response (Chen et al. 1999; Flohé
et al. 2003). It has been suggested that Hsp60 can activate cells

Fig. 1 Immunohistochemical staining for Hsp60 in KA (a), SCC G1-G2
(b), and SCC G3 (c); and CD1a in KA (d), SCC G1-G2 (e), and SCC G3
(f). High levels of Hsp60 and CD1a in KA; progressive decrease of

Hsp60 and CD1a-positive immunostaining in G1-G2 and G3 SCC, with
a mosaic pattern in G2 cases. Magnification ×200. Bar: 100 μm

CD1A-positive cells and HSP60 (HSPD1) levels



of the innate immune system, determining the release of Th1
cytokines (Chen et al. 1999), as well as act as a danger signal
and promote maturation of DCs (Chen et al. 1999; Flohé et al.
2003). Hsp60 can also stimulate B cells via TRL4-MyD88
signaling and, thereby, promote their proliferation, the expres-
sion of costimulatory molecules, and the secretion of Th2
cytokines (Cohen-Sfady et al. 2005). It has been shown that
Hsp60 is also able to interact with TRL2 on T cells, in turn
inhibiting the cytoskeletal rearrangement and the chemotaxis
induced by chemokine stromal cell-derived factor-1α (Zanin-
Zhorov et al. 2003, 2005). Hsp60 also colocalizes with both
CD14 receptor and lipopolysaccharide-binding sites, stimulat-
ing the immune response. Hsp60 acts together with a receptor
complex (consisting of CD14 co-receptor and TRL4 signaling
receptor) enhancing IL-12 production by antigen-presenting
cells (APCs) and the IFNγ release by Tcells, whose activation
strictly depends on the presence of professional APCs, such as
DCs (Osterloh et al. 2007). Furthermore, Hsp60 can activate
the innate immune response also by chaperoning pro-
inflammatory mediators (Tsan and Gao 2004).

CD1a antigen is constitutively expressed in DCs,
Langerhans’ cells, and thymocytes (Coventry and Heinzel
2004) in which it is present on the cell membrane associated
with β2-microglobulin (Porcelli et al. 1998). CD1a+
Langerhans’ cell precursors are recruited within sites of injury
in response to secreted chemokines (Dieu-Nosjean et al.
2000). In this way, CD1a antigen may contribute in the acti-
vation of the immune system that, in turn, may generate an
antitumor response (Coventry and Heinzel 2004).

We have postulated a synergistic action of Hsp60 and CD1a
cells in pre-tumoral and tumoral squamous epithelia (Corrao
et al. 2008). Particularly, because of the CD1a antigen and
Hsp60 involvement in activating the innate immune system re-
sponse, we hypothesized that when these two molecules are co-
expressed in a pretumoral tissue, their antitumor immune effects
would be amplified (Corrao et al. 2008). Indeed, Hsp60-positive
cells that have undergone a dangerous stress can release Hsp60
that can act as chaperone for lipid antigens to CD14/TRL4 re-
ceptors expressed on immature DCs. During pre-tumoral lipid-
antigen processing, DCs migrate and mature into the lymph
nodes and, finally, become able to present pre-tumoral lipid-
antigen to the CD1a positive cells, in turn activating the antitu-
mor immune response (Coventry and Heinzel 2004).

In this work, we found that levels of Hsp60 and CD1a cells
are low in SCC as compared to KA and one may argue that
when their synergistic action falls below a certain level, KA
can progress to SCC. One may postulate that low levels of
Hsp60, such as those found during cancer progression in other
squamous stratified epithelia like those of the oral, bronchial,
and urothelial mucosa (Cappello et al. 2005b, 2006a, b; Ito
et al. 1998; Lebret et al. 2003), are responsible for the reduc-
tion of the number and, consequently, of the anti-tumoral ac-
tivity of CD1a cells in KA.

Typically, CD1a cells present lipid antigen derived from
apoptotic or necrotic cells to T cells (Coventry and Heinzel
2004). In a previous work, we measured the lymphocytic in-
filtration in KA and SCC by using anti-CD3, −CD4, −CD8,
−CD20, and −CD57 antibodies (Cabibi et al. 2011). We did

Fig. 3 The histograms show the
immunopositivity for Hsp60 (a)
and CD1a (b) in KA, SCC G1-
G2, and SCC G3. Statistical
analyses demonstrated significant
differences between KA and SCC
G1-G2 and between SCC G1-G2
and SCC G3. * and Δ mean p
<0.05

Fig. 2 Heterogeneous diminution of Hsp60 levels in SCC G2, with
positivity maintained in some cells and decreased or absent in others,
creating a mosaic pattern. Magnification ×200. Bar: 100 μm
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not find significant differences between the groups for CD3,
CD4, CD8, and CD20. However, the mean number of
peritumoral CD57+ cells in KAwas significantly higher than
in SCC while the mean number of intratumoral CD57+ cells
was extremely low in all the groups.

The presence of a lymphocytic infiltrate is a favorable
prognostic indicator in some tumors, such as melanomas
(Clemente et al. 1996), head and neck tumors (Uppaluri
et al. 2008), and colon cancer (Jass 1986; Galon et al. 2006).
The main mechanism of anticancer immunity is cell-mediated
through the action of cytotoxic T lymphocytes (CTL) CD8+
and of Natural Killer (NK) cells, which occur in the inflam-
matory infiltrate surrounding tumors. The peritumoral CD57+
NK cells are significantly more numerous in KAwhen com-
pared with SCC, suggesting that an early deficit of local im-
munity has already occurred. This deficit would lead to a
failure in the mechanism that limits or impedes malignant
transformation in the presence of potential carcinogenetic fac-
tors, such as UV rays or HPV infections. Therefore, we previ-
ously suggest that KA regresses when the local immunity is
optimal, but it progresses to SCC if there is deficit of local
immunity, such as, for example, when CD1a+ and CD57+
cells are low in number and/or functionality, even in patients
that overall are immunocompetent (Cabibi et al. 2011). It is
likely that Hsp60 plays a key role in this suggested mechanism
of failure of local immunity that allows malignization of a
relatively benign lesion, and if so, therapeutic measures ought
to target also the chaperonin.

In addition, our findings open the door to investigations on
the interplay between Hsp60 and CD1a cells in the mecha-
nism of malignant transformation in KA and possibly other
tumors. Elucidation of this interplay and its role in carcino-
genesis might very well lead to the design of therapies cen-
tered on this chaperonin (Cappello et al. 2013). These thera-
pies should consist of, for instance, direct administration of
Hsp60 and/or boosting its anti-tumor potential by chemical
compounds specifically designed to modify the chaperonin’s

interactions and functions and direct them against progression
of carcinogenesis. Our hypothesis of synergism between
CD1a and Hsp60 in the progression from KA to SCC should
boost interest in these tumors as models for studying the in-
teraction mechanism between skin cancer and immunity.
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