211 research outputs found
Mean Field Theory of Sandpile Avalanches: from the Intermittent to the Continuous Flow Regime
We model the dynamics of avalanches in granular assemblies in partly filled
rotating cylinders using a mean-field approach. We show that, upon varying the
cylinder angular velocity , the system undergoes a hysteresis cycle
between an intermittent and a continuous flow regimes. In the intermittent flow
regime, and approaching the transition, the avalanche duration exhibits
critical slowing down with a temporal power-law divergence. Upon adding a white
noise term, and close to the transition, the distribution of avalanche
durations is also a power-law. The hysteresis, as well as the statistics of
avalanche durations, are in good qualitative agreement with recent experiments
in partly filled rotating cylinders.Comment: 4 pages, RevTeX 3.0, postscript figures 1, 3 and 4 appended
Labyrinthic granular landscapes
We have numerically studied a model of granular landscape eroded by wind. We
show the appearance of labyrinthic patterns when the wind orientation turns by
. The occurence of such structures are discussed. Morever, we
introduce the density of ``defects'' as the dynamic parameter governing
the landscape evolution. A power law behavior of is found as a function
of time. In the case of wind variations, the exponent (drastically) shifts from
2 to 1. The presence of two asymptotic values of implies the
irreversibility of the labyrinthic formation process.Comment: 3 pages, 3 figure, RevTe
Ripple and kink dynamics
We propose a relevant modification of the Nishimori-Ouchi model [{\em Phys.
Rev. Lett.} {\bf 71}, 197 (1993)] for granular landscape erosion. We explicitly
introduce a new parameter: the angle of repose , and a new process:
avalanches. We show that the parameter leads to an asymmetry of the
ripples, as observed in natural patterns. The temporal evolution of the maximum
ripple height is limited and not linear, according to recent
observations. The ripple symmetry and the kink dynamics are studied and
discussed.Comment: 7 pages, 10 figure, RevTe
Surface Instability in Windblown Sand
We investigate the formation of ripples on the surface of windblown sand
based on the one-dimensional model of Nishimori and Ouchi [Phys. Rev. Lett. 71,
197 (1993)], which contains the processes of saltation and grain relaxation. We
carry out a nonlinear analysis to determine the propagation speed of the
restabilized ripple patterns, and the amplitudes and phases of their first,
second, and third harmonics. The agreement between the theory and our numerical
simulations is excellent near the onset of instability. We also determine the
Eckhaus boundary, outside which the steady ripple patterns are unstable.Comment: 23 pages, 8 figure
Characterization of particle rebound phenomena in the erosion of turbomachinery
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77337/1/AIAA-44864-924.pd
Stochastic particle packing with specified granulometry and porosity
This work presents a technique for particle size generation and placement in
arbitrary closed domains. Its main application is the simulation of granular
media described by disks. Particle size generation is based on the statistical
analysis of granulometric curves which are used as empirical cumulative
distribution functions to sample from mixtures of uniform distributions. The
desired porosity is attained by selecting a certain number of particles, and
their placement is performed by a stochastic point process. We present an
application analyzing different types of sand and clay, where we model the
grain size with the gamma, lognormal, Weibull and hyperbolic distributions. The
parameters from the resulting best fit are used to generate samples from the
theoretical distribution, which are used for filling a finite-size area with
non-overlapping disks deployed by a Simple Sequential Inhibition stochastic
point process. Such filled areas are relevant as plausible inputs for assessing
Discrete Element Method and similar techniques
Field Measurements of Terrestrial and Martian Dust Devils
Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
- …