119 research outputs found
Cosmological particle creation in states of low energy
The recently proposed states of low energy provide a well-motivated class of
reference states for the quantized linear scalar field on cosmological
Friedmann-Robertson-Walker spacetimes. The low energy property of a state is
localized close to some value of the cosmological time coordinate. We present
calculations of the relative cosmological particle production between a state
of low energy at early time and another such state at later time. In an
exponentially expanding Universe, we find that the particle production shows
oscillations in the spatial frequency modes. The basis of the method for
calculating the relative particle production is completely rigorous.
Approximations are only used at the level of numerical calculation.Comment: 24 pages, 7 figure
On a Recent Construction of "Vacuum-like" Quantum Field States in Curved Spacetime
Afshordi, Aslanbeigi and Sorkin have recently proposed a construction of a
distinguished "S-J state" for scalar field theory in (bounded regions of)
general curved spacetimes. We establish rigorously that the proposal is
well-defined on globally hyperbolic spacetimes or spacetime regions that can be
embedded as relatively compact subsets of other globally hyperbolic spacetimes,
and also show that, whenever the proposal is well-defined, it yields a pure
quasifree state. However, by explicitly considering portions of ultrastatic
spacetimes, we show that the S-J state is not in general a Hadamard state. In
the specific case where the Cauchy surface is a round 3-sphere, we prove that
the representation induced by the S-J state is generally not unitarily
equivalent to that of a Hadamard state, and indeed that the representations
induced by S-J states on nested regions of the ultrastatic spacetime also fail
to be unitarily equivalent in general. The implications of these results are
discussed.Comment: 25pp, LaTeX. v2 References added, typos corrected. To appear in Class
Quantum Gravit
Local incompatibility of the microlocal spectrum condition with the KMS property along spacelike directions in quantum field theory on curved spacetime
States of a generic quantum field theory on a curved spacetime are considered which satisfy the KMS condition with respect to an evolution associated with a complete (Killing) vector field. It is shown that at any point where the vector field is spacelike, such states cannot satisfy a certain microlocal condition which is weaker than the microlocal spectrum condition in the case of asymptotically free fields
Charged sectors, spin and statistics in quantum field theory on curved spacetimes
The first part of this paper extends the Doplicher-Haag-Roberts theory of
superselection sectors to quantum field theory on arbitrary globally hyperbolic
spacetimes. The statistics of a superselection sector may be defined as in flat
spacetime and each charge has a conjugate charge when the spacetime possesses
non-compact Cauchy surfaces. In this case, the field net and the gauge group
can be constructed as in Minkowski spacetime.
The second part of this paper derives spin-statistics theorems on spacetimes
with appropriate symmetries. Two situations are considered: First, if the
spacetime has a bifurcate Killing horizon, as is the case in the presence of
black holes, then restricting the observables to the Killing horizon together
with "modular covariance" for the Killing flow yields a conformally covariant
quantum field theory on the circle and a conformal spin-statistics theorem for
charged sectors localizable on the Killing horizon. Secondly, if the spacetime
has a rotation and PT symmetry like the Schwarzschild-Kruskal black holes,
"geometric modular action" of the rotational symmetry leads to a
spin-statistics theorem for charged covariant sectors where the spin is defined
via the SU(2)-covering of the spatial rotation group SO(3).Comment: latex2e, 73 page
Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields on curved spacetime
We derive for a pair of operators on a symplectic space which are adjoints of
each other with respect to the symplectic form (that is, they are sympletically
adjoint) that, if they are bounded for some scalar product on the symplectic
space dominating the symplectic form, then they are bounded with respect to a
one-parametric family of scalar products canonically associated with the
initially given one, among them being its ``purification''. As a typical
example we consider a scalar field on a globally hyperbolic spacetime governed
by the Klein-Gordon equation; the classical system is described by a symplectic
space and the temporal evolution by symplectomorphisms (which are
symplectically adjoint to their inverses). A natural scalar product is that
inducing the classical energy norm, and an application of the above result
yields that its ``purification'' induces on the one-particle space of the
quantized system a topology which coincides with that given by the two-point
functions of quasifree Hadamard states. These findings will be shown to lead to
new results concerning the structure of the local (von Neumann)
observable-algebras in representations of quasifree Hadamard states of the
Klein-Gordon field in an arbitrary globally hyperbolic spacetime, such as local
definiteness, local primarity and Haag-duality (and also split- and type
III_1-properties). A brief review of this circle of notions, as well as of
properties of Hadamard states, forms part of the article.Comment: 42 pages, LaTeX. The Def. 3.3 was incomplete and this has been
corrected. Several misprints have been removed. All results and proofs remain
unchange
On the Reeh-Schlieder Property in Curved Spacetime
We attempt to prove the existence of Reeh-Schlieder states on curved
spacetimes in the framework of locally covariant quantum field theory using the
idea of spacetime deformation and assuming the existence of a Reeh-Schlieder
state on a diffeomorphic (but not isometric) spacetime. We find that physically
interesting states with a weak form of the Reeh-Schlieder property always exist
and indicate their usefulness. Algebraic states satisfying the full
Reeh-Schlieder property also exist, but are not guaranteed to be of physical
interest.Comment: 13 pages, 2 figure
Microlocal analysis of quantum fields on curved spacetimes: Analytic wavefront sets and Reeh-Schlieder theorems
We show in this article that the Reeh-Schlieder property holds for states of
quantum fields on real analytic spacetimes if they satisfy an analytic
microlocal spectrum condition. This result holds in the setting of general
quantum field theory, i.e. without assuming the quantum field to obey a
specific equation of motion. Moreover, quasifree states of the Klein-Gordon
field are further investigated in this work and the (analytic) microlocal
spectrum condition is shown to be equivalent to simpler conditions. We also
prove that any quasifree ground- or KMS-state of the Klein-Gordon field on a
stationary real analytic spacetime fulfills the analytic microlocal spectrum
condition.Comment: 31 pages, latex2
The split property for locally covariant quantum field theories in curved spacetime
The split property expresses the way in which local regions of spacetime define subsystems of a quantum field theory. It is known to hold for general theories in Minkowski space under the hypothesis of nuclearity. Here, the split property is discussed for general locally covariant quantum field theories in arbitrary globally hyperbolic curved spacetimes, using a spacetime deformation argument to transport the split property from one spacetime to another. It is also shown how states obeying both the split and (partial) Reeh–Schlieder properties can be constructed, providing standard split inclusions of certain local von Neumann algebras. Sufficient conditions are given for the theory to admit such states in ultrastatic spacetimes, from which the general case follows. A number of consequences are described, including the existence of local generators for global gauge transformations, and the classification of certain local von Neumann algebras. Similar arguments are applied to the distal split property and circumstances are exhibited under which distal splitting implies the full split property
Distillability and positivity of partial transposes in general quantum field systems
Criteria for distillability, and the property of having a positive partial
transpose, are introduced for states of general bipartite quantum systems. The
framework is sufficiently general to include systems with an infinite number of
degrees of freedom, including quantum fields. We show that a large number of
states in relativistic quantum field theory, including the vacuum state and
thermal equilibrium states, are distillable over subsystems separated by
arbitrary spacelike distances. These results apply to any quantum field model.
It will also be shown that these results can be generalized to quantum fields
in curved spacetime, leading to the conclusion that there is a large number of
quantum field states which are distillable over subsystems separated by an
event horizon.Comment: 25 pages, 2 figures. v2: Typos removed, references and comments
added. v3: Expanded introduction and reference list. To appear in Rev. Math.
Phy
- …