119 research outputs found

    Cosmological particle creation in states of low energy

    Full text link
    The recently proposed states of low energy provide a well-motivated class of reference states for the quantized linear scalar field on cosmological Friedmann-Robertson-Walker spacetimes. The low energy property of a state is localized close to some value of the cosmological time coordinate. We present calculations of the relative cosmological particle production between a state of low energy at early time and another such state at later time. In an exponentially expanding Universe, we find that the particle production shows oscillations in the spatial frequency modes. The basis of the method for calculating the relative particle production is completely rigorous. Approximations are only used at the level of numerical calculation.Comment: 24 pages, 7 figure

    On a Recent Construction of "Vacuum-like" Quantum Field States in Curved Spacetime

    Full text link
    Afshordi, Aslanbeigi and Sorkin have recently proposed a construction of a distinguished "S-J state" for scalar field theory in (bounded regions of) general curved spacetimes. We establish rigorously that the proposal is well-defined on globally hyperbolic spacetimes or spacetime regions that can be embedded as relatively compact subsets of other globally hyperbolic spacetimes, and also show that, whenever the proposal is well-defined, it yields a pure quasifree state. However, by explicitly considering portions of ultrastatic spacetimes, we show that the S-J state is not in general a Hadamard state. In the specific case where the Cauchy surface is a round 3-sphere, we prove that the representation induced by the S-J state is generally not unitarily equivalent to that of a Hadamard state, and indeed that the representations induced by S-J states on nested regions of the ultrastatic spacetime also fail to be unitarily equivalent in general. The implications of these results are discussed.Comment: 25pp, LaTeX. v2 References added, typos corrected. To appear in Class Quantum Gravit

    Local incompatibility of the microlocal spectrum condition with the KMS property along spacelike directions in quantum field theory on curved spacetime

    Get PDF
    States of a generic quantum field theory on a curved spacetime are considered which satisfy the KMS condition with respect to an evolution associated with a complete (Killing) vector field. It is shown that at any point where the vector field is spacelike, such states cannot satisfy a certain microlocal condition which is weaker than the microlocal spectrum condition in the case of asymptotically free fields

    Charged sectors, spin and statistics in quantum field theory on curved spacetimes

    Full text link
    The first part of this paper extends the Doplicher-Haag-Roberts theory of superselection sectors to quantum field theory on arbitrary globally hyperbolic spacetimes. The statistics of a superselection sector may be defined as in flat spacetime and each charge has a conjugate charge when the spacetime possesses non-compact Cauchy surfaces. In this case, the field net and the gauge group can be constructed as in Minkowski spacetime. The second part of this paper derives spin-statistics theorems on spacetimes with appropriate symmetries. Two situations are considered: First, if the spacetime has a bifurcate Killing horizon, as is the case in the presence of black holes, then restricting the observables to the Killing horizon together with "modular covariance" for the Killing flow yields a conformally covariant quantum field theory on the circle and a conformal spin-statistics theorem for charged sectors localizable on the Killing horizon. Secondly, if the spacetime has a rotation and PT symmetry like the Schwarzschild-Kruskal black holes, "geometric modular action" of the rotational symmetry leads to a spin-statistics theorem for charged covariant sectors where the spin is defined via the SU(2)-covering of the spatial rotation group SO(3).Comment: latex2e, 73 page

    Continuity of symplectically adjoint maps and the algebraic structure of Hadamard vacuum representations for quantum fields on curved spacetime

    Full text link
    We derive for a pair of operators on a symplectic space which are adjoints of each other with respect to the symplectic form (that is, they are sympletically adjoint) that, if they are bounded for some scalar product on the symplectic space dominating the symplectic form, then they are bounded with respect to a one-parametric family of scalar products canonically associated with the initially given one, among them being its ``purification''. As a typical example we consider a scalar field on a globally hyperbolic spacetime governed by the Klein-Gordon equation; the classical system is described by a symplectic space and the temporal evolution by symplectomorphisms (which are symplectically adjoint to their inverses). A natural scalar product is that inducing the classical energy norm, and an application of the above result yields that its ``purification'' induces on the one-particle space of the quantized system a topology which coincides with that given by the two-point functions of quasifree Hadamard states. These findings will be shown to lead to new results concerning the structure of the local (von Neumann) observable-algebras in representations of quasifree Hadamard states of the Klein-Gordon field in an arbitrary globally hyperbolic spacetime, such as local definiteness, local primarity and Haag-duality (and also split- and type III_1-properties). A brief review of this circle of notions, as well as of properties of Hadamard states, forms part of the article.Comment: 42 pages, LaTeX. The Def. 3.3 was incomplete and this has been corrected. Several misprints have been removed. All results and proofs remain unchange

    On the Reeh-Schlieder Property in Curved Spacetime

    Get PDF
    We attempt to prove the existence of Reeh-Schlieder states on curved spacetimes in the framework of locally covariant quantum field theory using the idea of spacetime deformation and assuming the existence of a Reeh-Schlieder state on a diffeomorphic (but not isometric) spacetime. We find that physically interesting states with a weak form of the Reeh-Schlieder property always exist and indicate their usefulness. Algebraic states satisfying the full Reeh-Schlieder property also exist, but are not guaranteed to be of physical interest.Comment: 13 pages, 2 figure

    Microlocal analysis of quantum fields on curved spacetimes: Analytic wavefront sets and Reeh-Schlieder theorems

    Full text link
    We show in this article that the Reeh-Schlieder property holds for states of quantum fields on real analytic spacetimes if they satisfy an analytic microlocal spectrum condition. This result holds in the setting of general quantum field theory, i.e. without assuming the quantum field to obey a specific equation of motion. Moreover, quasifree states of the Klein-Gordon field are further investigated in this work and the (analytic) microlocal spectrum condition is shown to be equivalent to simpler conditions. We also prove that any quasifree ground- or KMS-state of the Klein-Gordon field on a stationary real analytic spacetime fulfills the analytic microlocal spectrum condition.Comment: 31 pages, latex2

    The split property for locally covariant quantum field theories in curved spacetime

    Get PDF
    The split property expresses the way in which local regions of spacetime define subsystems of a quantum field theory. It is known to hold for general theories in Minkowski space under the hypothesis of nuclearity. Here, the split property is discussed for general locally covariant quantum field theories in arbitrary globally hyperbolic curved spacetimes, using a spacetime deformation argument to transport the split property from one spacetime to another. It is also shown how states obeying both the split and (partial) Reeh–Schlieder properties can be constructed, providing standard split inclusions of certain local von Neumann algebras. Sufficient conditions are given for the theory to admit such states in ultrastatic spacetimes, from which the general case follows. A number of consequences are described, including the existence of local generators for global gauge transformations, and the classification of certain local von Neumann algebras. Similar arguments are applied to the distal split property and circumstances are exhibited under which distal splitting implies the full split property

    Distillability and positivity of partial transposes in general quantum field systems

    Full text link
    Criteria for distillability, and the property of having a positive partial transpose, are introduced for states of general bipartite quantum systems. The framework is sufficiently general to include systems with an infinite number of degrees of freedom, including quantum fields. We show that a large number of states in relativistic quantum field theory, including the vacuum state and thermal equilibrium states, are distillable over subsystems separated by arbitrary spacelike distances. These results apply to any quantum field model. It will also be shown that these results can be generalized to quantum fields in curved spacetime, leading to the conclusion that there is a large number of quantum field states which are distillable over subsystems separated by an event horizon.Comment: 25 pages, 2 figures. v2: Typos removed, references and comments added. v3: Expanded introduction and reference list. To appear in Rev. Math. Phy
    • …
    corecore