512 research outputs found
Recommended from our members
Nonstationary interference and scattering from random media
For the small angle scattering of coherent plane waves from inhomogeneous random media, the three dimensional mean square distribution of random fluctuations may be recovered from the interferometric detection of the nonstationary modulational structure of the scattered field. Modulational properties of coherent waves scattered from random media are related to nonlocal correlations in the double sideband structure of the Fourier transform of the scattering potential. Such correlations may be expressed in terms of a suitability generalized spectral coherence function for analytic fields
Experimental conditions to suppress edge localised modes by magnetic perturbations in the ASDEX Upgrade tokamak
Access conditions for full suppression of Edge Localised Modes (ELMs) by
Magnetic Perturbations (MP) in low density high confinement mode (H-mode)
plasmas are studied in the ASDEX Upgrade tokamak. The main empirical
requirements for full ELM suppression in our experiments are: 1. The poloidal
spectrum of the MP must be aligned for best plasma response from weakly stable
kink-modes, which amplify the perturbation, 2. The plasma edge density must be
below a critical value, ~m. The edge collisionality
is in the range (ions) and
(electrons). However, our data does not show that the edge collisionality is
the critical parameter that governs access to ELM suppression. 3. The pedestal
pressure must be kept sufficiently low to avoid destabilisation of small ELMs.
This requirement implies a systematic reduction of pedestal pressure of
typically 30\% compared to unmitigated ELMy H-mode in otherwise similar
plasmas. 4. The edge safety factor lies within a certain window.
Within the range probed so far, , one such window,
has been identified. Within the range of plasma rotation
encountered so far, no apparent threshold of plasma rotation for ELM
suppression is found. This includes cases with large cross field electron flow
in the entire pedestal region, for which two-fluid MHD models predict that the
resistive plasma response to the applied MP is shielded
Beam ion losses due to energetic particle geodesic acoustic modes
We report the first experimental observations of fast-ion loss in a tokamak due to energetic particle driven geodesic acoustic modes (EGAMs). A fast-ion loss detector installed on the DIII-D tokamak observes bursts of beam ion losses coherent with the EGAM frequency. The EGAM activity results in a significant loss of beam ions, comparable to the first orbit losses. The pitch angles and energies of the measured fast-ion losses agree with predictions from a full orbit simulation code SPIRAL, which includes scattering and slowing-down.U.S. Department of Energy DE-FC02-04ER 54698, SC-G903402, DE-AC02-09CH1146
- …