56 research outputs found

    Investigation of tectonically affected groundwater systems through a multidisciplinary approach

    Get PDF
    This study uses a multidisciplinary approach to obtain a complete picture of the groundwater system of complex mountain aquifers. An Alpine region (the north-western area of Lake Como, Italy), characterized by two regional fault systems (The Breglia and Grona fault systems) containing different lithologies, was investigated using the multidisciplinary approach described here. The use of Principal Components Analysis (PCA), classical geochemical bivariate and trivariate diagrams of major and trace elements, and geostructural data, including remote sensing, permitted the identification of three principal groups of water. The first group, characterized by an enrichment of Ca2+ and HCO3-, flow in limestone. The second group is enriched in HCO3-, Ca2+ and Mg2+ and circulates through dolomite rocks. The third group, characterized by a decrease of Ca2+ and Mg2+, an increase of Na++K+ and a high Si/electrical conductivity (EC) ratio, flow in the basement rocks. Nevertheless, some peculiarities were evident. The matching of PCA, hydrochemical and geostructural information explains the role played by faults in water circulation. In particular, the Breglia fault permits the rise of deep water from crystalline basement and dolomite. Similarly, the Grona fault plays a role on drainage in proximity to the contact between the crystalline basement and the sedimentary cover. The springs located near the Grona fault rise into the crystalline basement but reflect a dolomite water chemistry. The multidisciplinary approach allowed understanding of the groundwater system and identification of fault systems not detectable with a geostructural survey

    Stability Analysis of a Landslide Scarp by Means of Virtual Outcrops: The Mt. Peron Niche Area (Masiere di Vedana Rock Avalanche, Eastern Southern Alps)

    Get PDF
    We investigated the Mt. Peron niche area of the Masiere di Vedana rock avalanche (BL), one of the major mass movements that affected the Eastern Southern Alps in historical times. So far, a geomechanical characterization and a stability analysis of the niche area, where potential rockfall sources are present, are lacking. The Mt. Peron niche area is a rocky cliff almost inaccessible to field-based measurements. In order to overcome this issue, we performed a geo-structural characterization of a sector of the cliff by means of a UAV-based photogrammetric survey. From the virtual outcrop, we extracted the orientation of 159 fractures that were divided into sets based on a K-means clustering algorithm and field-checked with some measurements collected along a rappelling descent route down to the cliff. Finally, with the aim of evaluating the stability of the volume under investigation, we performed a stability analysis of three rock pillars included in our survey by means of a distinct element numerical simulation. Our results indicate that two out of the three pillars are characterized by a stable state, under the simulation assumptions, whereas the third is close to failure, and for this reason, its condition needs further investigation

    Ground effects induced by the 2012 seismic sequence in Emilia: implications for seismic hazard assessment in the Po Plain

    Get PDF
    Since May 16, 2012, a seismic sequence has affected a wide portion of the Emilia Region (northern Italy), chiefly for the Modena and Ferrara Provinces. The first mainshock (Ml 5.9; focal depth, ca. 6 km) occurred on May 20, 2012, with the epicenter located a few kilometers north of Finale Emilia. A second main shock (Ml 5.8; focal depth, ca. 10 km) occurred on May 29, 2012, about 12 km west of the first earthquake, with the epicenter near Medolla. The seismic sequence has been characterized by five other Ml 655 events, and more than 2,300 aftershocks of lower magnitude, until the end July 2012. The distribution of the aftershocks identifies a WNW-ESE-trending zone ca. 40 km long that is characterized by NNE-SSW nearly pure compression, as indicated by the focal mechanisms. This report focuses on the many ground effects that were induced by this seismic sequence, as mainly cracks, liquefaction-type phenomena, and hydrological anomalies. The aim is to provide a complete representation of such effects, to: illustrate their type, size and areal distribution; identify the zones in the affected area that were most prone to the occurrence of ground effects (i.e., more susceptible to local geological instability in the case of earthquake occurrence); carry out an independent assessment of the intensities of the earthquakes through the ESI 2007 intensity scale, which is based only on coseismic effects on the natural environment

    Relationship of imatinib-free plasma levels and target genotype with efficacy and tolerability

    Get PDF
    Imatinib has revolutionised the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumours (GIST). Using a nonlinear mixed effects population model, individual estimates of pharmacokinetic parameters were derived and used to estimate imatinib exposure (area under the curve, AUC) in 58 patients. Plasma-free concentration was deduced from a model incorporating plasma levels of alpha1-acid glycoprotein. Associations between AUC (or clearance) and response or incidence of side effects were explored by logistic regression analysis. Influence of KIT genotype was also assessed in GIST patients. Both total (in GIST) and free drug exposure (in CML and GIST) correlated with the occurrence and number of side effects (e.g. odds ratio 2.7±0.6 for a two-fold free AUC increase in GIST; P<0.001). Higher free AUC also predicted a higher probability of therapeutic response in GIST (odds ratio 2.6±1.1; P=0.026) when taking into account tumour KIT genotype (strongest association in patients harbouring exon 9 mutation or wild-type KIT, known to decrease tumour sensitivity towards imatinib). In CML, no straightforward concentration–response relationships were obtained. Our findings represent additional arguments to further evaluate the usefulness of individualising imatinib prescription based on a therapeutic drug monitoring programme, possibly associated with target genotype profiling of patients

    A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy

    Get PDF
    We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting
    • 

    corecore