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This study uses a multidisciplinary approach to obtain a complete picture of the groundwater system of
complex mountain aquifers. An Alpine region (the north-western area of Lake Como, Italy), characterized
by two regional fault systems (The Breglia and Grona fault systems) containing different lithologies, was
investigated using the multidisciplinary approach described here. The use of Principal Components Anal-
ysis (PCA), classical geochemical bivariate and trivariate diagrams of major and trace elements, and geo-
structural data, including remote sensing, permitted the identification of three principal groups of water.
The first group, characterized by an enrichment of Ca2+ and HCO�3 , flow in limestone. The second group is
enriched in HCO�3 , Ca2+ and Mg2+ and circulates through dolomite rocks. The third group, characterized by
a decrease of Ca2+ and Mg2+, an increase of Na+ + K+ and a high Si/electrical conductivity (EC) ratio, flow in
the basement rocks. Nevertheless, some peculiarities were evident. The matching of PCA, hydrochemical
and geostructural information explains the role played by faults in water circulation. In particular, the
Breglia fault permits the rise of deep water from crystalline basement and dolomite. Similarly, the Grona
fault plays a role on drainage in proximity to the contact between the crystalline basement and the sed-
imentary cover. The springs located near the Grona fault rise into the crystalline basement but reflect a
dolomite water chemistry. The multidisciplinary approach allowed understanding of the groundwater
system and identification of fault systems not detectable with a geostructural survey.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The chemical composition of springs has been studied exten-
sively in the past with the purpose of both establishing their qual-
ity for possible human exploitation and for defining geochemical
signatures to establish groundwater flow paths. These topics are
clearly connected as the understanding of the groundwater system
is mandatory for the assessment of water resources, their exploita-
tion and safety (see e.g. the recent review Hua et al., 2011; Kacar-
oglu, 1999, for karst aquifers). Nevertheless, structural features of
the host rock formations may severely complicate the identifica-
tion of groundwater flow. Tectonic control has been demonstrated
to strongly affect groundwater circulation (e.g. Earman et al., 2008;
also Civita, 2005; Scesi and Gattinoni, 2007; Goldscheider and Neu-
kum, 2010 for the Alpine region) both directly (faults acting as
preferential pathways or barriers) and indirectly (induced rock
fracturing). Rock fracturing, whatever its origin, is a second factor
strongly affecting aquifer structure and groundwater flow: frac-
tured rocks are neither homogeneous nor isotropic, making the
identification of their flow patterns a particularly challenging task
(e.g. reviewed by Neuman (2005) and Eaton (2006)). As a final fac-
tor, the combination of fast and slow flow patterns in karst systems
make groundwater modelling a challenging task (e.g. the classical
review by Legrand and Stringfield (1973), and the more recent
one by Ghasemizadeh et al. (in press)). As an additional consider-
ation, weathering and/or paleoweathering in non-karst systems
has been proposed recently as a major factor influencing ground-
water circulation (e.g. Lachassagne et al., 2011).

This complexity has been addressed by different methods. Mod-
elling clearly continues to play a major role (e.g. Neuman, 2005;
Eaton, 2006; Ghasemizadeh et al., in press), although two major is-
sues hinder its widespread application. First, data on aquifer struc-
ture (e.g., rock fracturing and permeability) should be available,
which is seldom the case when extensive Quaternary cover
strongly limits the outcrops (e.g. Terrana et al., 2010). Second,
modelling of complex areas including several fault systems and a
complex topography is beyond present possibilities. The use of
geochemical tracers is an alternative, indirect approach for the
understanding of groundwater circulation (e.g. Banks et al.,
1998). These methods make use of geochemical plots to classify
waters on the basis of their chemical composition and to infer their
circulation.

In this paper, it is shown that the issues posed by complex
groundwater systems may be efficiently addressed by using differ-
ent integrated methodologies such as: multivariate analysis (Prin-
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cipal Component Analysis, PCA), traditional geochemical methods
(comparison plots) and geostructural analyses. The method is ap-
plied to an Alpine region (the north-western area of the Lake Como
basin, Italy) that is characterized by several fault systems (includ-
ing one of regional relevance separating the crystalline basement
and the sedimentary cover), different lithologies, and complex
topology. The area is lacking in outcrops and has a large number
of springs. To the best of the authors’ knowledge, such an inte-
grated approach has never been undertaken to study such a com-
plex area, although examples of the use of PCA for groundwater
characterization may be found in the literature (Stetzenbach
et al., 1999; Koonce et al., 2006; Dassi, 2011). As a result, this inte-
grated method allows full characterization of mountain aquifers
with complex geological conditions and the assessment of the role
played by faults and fracture systems on groundwater circulation.
2. Study area

2.1. Physiographic setting

The investigated area is situated in northern Italy, in the north-
ern-western part of the Lake Como basin with a total area of
55 km2 (Fig. 1). It extends in a N–S direction between the towns
of San Siro and Menaggio, and in an E–W direction between San
Siro and Carlazzo. The study area is sparsely populated, and the
population is concentrated in small towns. The local topography
is represented by a foothill zone surrounded by WNW–ESE and
E–W oriented mountains. Ground elevation ranges from about
200 m a.s.l. near Lake Como and 2245 m a.s.l. of the mountain Pizzo
di Gino, located in the NW part of the study area. The hydrographic
setting is poorly developed. In general, there are many small
streams, often without water. Senagra and Cuccio are the principal
torrents. The Senagra torrent rises south of Monte Bregagno and
flows into Lake Como near Menaggio. The Cuccio torrent rises in
the Pizzo di Gino mountain and flows into Lake Lugano near Por-
lezza. In the study area, there are also two lakes: Lake Como situ-
ated in the eastern part, and Lake Piano, located in the central part
south of Carlazzo.

The valley area, Val Menaggio, is the location of productive
activities (e.g., bottling of mineral water and other beverages,
and tourism) and agricultural use of the land, while in the other
parts of the study area, the typical vegetation of a pre-alpine zone
is present. The climate of the region is influenced by many factors:
the collision of the moist and temperate air of the Mediterranean
Sea and the Atlantic Ocean with the cold air of the European con-
tinent; the presence of the Alpine chain, which creates breaks in air
masses; and the presence of big pre-alpine lakes (Lugano and
Como Lakes), which have mesoclimatic effects (Belloni and Cojazzi,
1985). The annual rainfall is about 1200 mm with the maximum in
July and the minimum in December (2006–2010 data – Centro
Geofisico Prealpino Lariano).
2.2. Geological setting

The area of interest belongs to the Southern Alps domain. It is
located several tens of km to the South of the Periadriatic linea-
ment. This lineament separates the Southern Alps from the Austro-
alpine and Penninic domains (Vai et al., 1981; Bertotti, 1991;
Schumacher et al., 1996). The geological setting is characterized
by the crystalline metamorphic basement of the Southern Alps
and by the Permo-Triassic sedimentary cover (Figs. 1 and 2). The
crystalline basement (pre-Westfaliano; Perotti, 1987), located in
the northern part of the area (Fig. 1), is characterized by micaschist
and staurolite gneiss and muscovite orthogneiss (Gneiss Chiari;
Boriani and Colombo, 1979; Spalla et al., 2000). The muscovite
orthogneiss consists of amphibolite grade heterogeneous gneiss,
highly deformed and poorly defined (Bertotti, 1991). The micas-
chist and staurolite gneiss consist of gneiss and metamorphosed
schist, which were deformed in amphibolitic conditions (Reinhard,
1953; Boriani et al., 1977).

The sedimentary cover is characterized by lithologies from
Permian age to Jurassic age (Gianotti and Tannoia, 1988; Bertotti,
1991; Fig. 2); it consists mainly of conglomerate, sandstone, lime-
stone and dolomite (Renevier, 1879; Lehner, 1952; Casati, 1964;
Allasinaz, 1968; Kalin and Trumpy, 1977; Farabegoli and De Zan-
che, 1984; Gianotti, 1984; Gaetani et al., 1986; Bernoulli et al.,
1990; Bertotti, 1991). The Permian-Schitic units outcrop in the east
part of the study area and are represented by the Verrucano and
Servino Formations. These consist of matrix-supported conglomer-
ates and grain-supported sandstones (Lehner, 1952; Fig. 2). The
Triassic series outcrop in the central and western parts of the study
area (Fig. 1). They are characterized by dolomite (San Salvatore
Dolomite and Dolomia Principale), limestone (Cunardo Formation),
marly limestone (Zu Limestone), limestone with evaporitic bodies
(Raibl Beds), bituminous limestone (Zorzino Formation) and dolo-
mite conglomerate (Ligomena Breccia; Fig. 2). The Jurassic series
outcrop in the southern part of the area; they consist of dolomite
(Conchodon Dolomite) and siliceous limestone (Moltrasio Lime-
stone; Fig. 2). Quaternary deposits include glacial deposits, land-
slide deposits, alluvional deposits and conoid (Fig. 1).

The investigated area is crossed by an important longitudinal
fault of the Alpine chain (Grona fault), and a transversal one (Bre-
glia fault; Fig. 1). The Grona fault, in the western and central part of
the area, assumes an ENE–WSW trend, while in the eastern part, it
has a NW–SE trend. This is a high angle fault, which divides the
crystalline basement to the north from the sedimentary cover to
the south (Bertotti, 1991; Venzo and Maglia, 1947; Lehner,
1952). The Breglia fault is a NE–SW strike-slip fault that divides
the Monte Grona Dolomite to the west from the Nobiallo region se-
quence to the east (Bertotti, 1991).

The hydrogeological setting of the area is inadequately de-
scribed by some technical reports made by the local municipalities.
These data are insufficient to discriminate the different aquifers
and the routes of water circulation. Pozzi (1962) and Francani
(1986) distinguished five hydrogeological series in the study area,
characterized by different permeability: the crystalline basement,
Verrucano and Servino Formations; Raibl Beds; Dolomia Princi-
pale; Calcare di Zu; Conchodon Dolomite and Moltrasio Limestone.
In particular, the Dolomia Principale, Conchodon Dolomite and
Moltrasio Limestone series are characterized by high water circula-
tion (Francani, 1986). In the northeastern (or northern and eastern
parts) part of the study area, permeability is high (from 1.2 � 10�3

to 8.7 � 10�4 m/s; Gambillara, 2005); this is due to the strong frac-
turing from the tectonic activity in the area (Gambillara, 2005).
Gambillara (2005) developed a distribution map of permeability
that highlighted the high permeability values in proximity to
faults.
3. Material and methods

In this study, a spring sampling campaign and a geostructural
survey were undertaken: 30 springs were sampled and a geostruc-
tural analysis was performed in 17 sites of the investigated area
(Figs. 1 and 3). Springs were sampled during spring-summer
2010 as follows: 18 rising into sedimentary rocks, 5 into the crys-
talline basement and 7 into glacial deposits (Table 1). Five of these
springs are located near the contact between the sedimentary
rocks and the basement along one of the fault zones (Fig. 3). Some
of the springs are situated in areas or places with peculiar geolog-
ical settings: Mn2 and Mn3 springs rise in a glacial deposit in prox-



Fig. 1. Location and geological map of the study area.
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imity to the Breglia fault system; Pl1, Pl2, Pl3, Pl4 and Pl5 springs
are located near the contact between muscovite orthogneiss and
Dolomia Principale along the Grona fault system (Fig. 1).

3.1. Water sampling and chemical analyses

Ultrapure water from a Millipore MilliQ system (18 MX cm
resistivity) and ultrapure concentrated HCl and HNO3 (Suprapure
from Fluka) were used throughout. Low-density polyethylene
(LDPE) sampling bottles (trace element analysis) and polypropyl-
ene vials (ion chromatography determinations) were washed and
stored in 6 M HCl solution. Bottles and vials were thoroughly
rinsed with ultrapure water before use. Water samples were col-
lected by hand. Aliquots for ion chromatography were syringe fil-
tered in the field and acidified (HNO3, final pH = 2) in the case of
cation determination. Aliquots for trace element determination
were filtered using prewashed 0.45 lm nitrocellulose filters and
stabilized to pH = 2 with HNO3. All solution preparation and sam-
ple manipulations in the laboratory were executed in a class 100
laminar-flow hood to minimize external contamination.
Physical chemical parameters (temperature, pH and Electrical
Conductivity – EC) were determined in the field using portable
instrumentation: a HANNA HI 9025 pH meter and a pIONeer 65
conductivity meter equipped with a temperature probe. The
instruments were calibrated daily in the field before sampling.
Reactive silica (labelled as Si in this article) was determined using
an Aquamerck portable kit from Merck Eurolab. The concentration
of major ions was determined in the laboratory by ion chromatog-
raphy with an automated IC761 instrument (Metrohm, Herisau,
Switzerland) equipped with conductometric detection and an
autosampler (Metrohm 831 Compact Autosampler). Anion deter-
mination was performed on a Metrosep A Supp 5–250 column with
a 1.5 mL/min eluent flux (3.2 mM Na2CO3 + 1.0 mM NaHCO3). Cat-
ion analysis was carried out using a Metrosep Cation C2 150 col-
umn, a 4.0 mM tartaric acid and 0.75 mM dipicolinic acid eluent
and no chemical suppression, with a 1.0 mL/min flow rate. Anions
and cations were quantified by external calibration curves. To as-
sure data accuracy, the instrumental calibration for each analyte
was performed daily by accurate dilution of a 1000 mg/L standard
solution (Merck) acidified to pH = 2 with HNO3 in the case of cation



Fig. 2. Lithostratigraphic column of the study area.
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determinations. The measured limits of detection (LOD) were 5 lg/
L for anions and 5–20 lg/L for cations, respectively, (estimated fol-
lowing the International Union of Pure and Applied Chemistry –
IUPAC rules, 1995). The relative percentage standard deviations
(RSD%) were 2–5%.

Total alkalinity (essentially HCO�3 ) was determined via an acid–
base potentiometric titration with standardised �0.01 M HCl: the
equivalence point was calculated using Gran’s plot (Dossi et al.,
2000).

Trace element determinations were performed using a VG Ele-
mental PlasmaQuad 3 Inductively Coupled Plasma–Mass Spec-
trometry (ICP–MS). The optimization of the instrument was
performed as recommended by the manufacturer by tuning with
a 10 lg/L multi-standard solution. Standard solutions for external
calibration were prepared daily by dilution of a 10 mg/L multi-
standard solution (Merck) and acidified to 2% with Suprapur
HNO3. The following isotopes were measured: 7Li, 11B, 27Al, 51V,
53Cr, 55Mn, 57Fe, 59Co, 60Ni, 65Cu, 66Zn, 75As and 85Rb, as suggested
by the manufacturer (the selection of the isotope for every element
is a compromise between sensitivity, isotopic abundance and lack
of isobaric interferences). The signal recorded at m/z 75 for As was
corrected because of the known polyatomic interference due to the
formation of the 75ArCl species:

75As ¼ 75ICPS� 3:127ð77ICPS� 0:81582ICPSÞ;

where 75 ICPS, 77 ICPS and 82 ICPS denote the Integrated Counts
Per Second registered at m/z 75, 77 and 82, respectively, (see Envi-
ronmental Protection Agency (EPA) method 200.8 as an example).
The LODs of all elements were estimated following IUPAC rules
(1995) and ranged from 0.20 lg/L for lighter elements (Li and B)
down to 2–10 ng/L for Co, Zn, Pb and U. Radon-222 activity was
measured by the Electret Ion Chamber method using an E-PERM
system from Rad Elec Inc. (Kotrappa et al., 1988; Kotrappa and Jest-
ers, 1993; Fjeld et al., 1994; Kotrappa, 2008). All analyses were car-
ried out in the Analytical Chemistry Research Laboratory, University
of Insubria, Como.
3.2. Groundwater chemistry

Data processing was done using qualitative plots, such as trian-
gular diagrams, bivariate plots and Chebotarev diagrams (Chebot-
arev, 1952; Celico, 1986; Faure, 1996). Contours, or distribution
graphical models were obtained using the software Surfer (version
8.03 – Golden Software, Inc., Colorado, USA). The implementation
of the dataset was done using the kriging approach, which includes
a group of geostatistical techniques that interpolate the random
field values, fitting them in a family of linear least squares estima-
tion algorithms (Krige, 1951; Matheron, 1963; Agterberg, 1974;
Isaaks and Srivastava, 1989). The axes of the Chebotarev diagram
(Fig. 4a) shows HCO�3 , Ca2+ + Mg2+, Cl� + SO2�

4 and Na+ + K+ values
normalized to 50. This plot enables the detection of groups of
water with similar features. Its results should be combined to the
ones obtained by triangular diagrams to give more accurate infor-
mation about the water classification. The axes of the triangular



Fig. 3. Remote sensing (ASTER-1991005 multispectral image – false colour composite 1, 2, 3 band) and geo-structural analysis of the study area.

R. Gambillara et al. / Applied Geochemistry 33 (2013) 13–24 17



Fig. 4. Chebotarev diagram (a), cation (b) and anion (c) triangular diagrams of the studied water springs.
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diagrams show ion content values normalized to 100 (Fig. 4b and
c). The anion triangular diagram analyzes Cl�, SO2�

4 and HCO2�
3 ,

while the cation triangular diagram analyzes Ca2+, Mg2+ and
Na+ + K+.

Several bivariate plots between major and trace elements were
also done to identify water–rock interaction processes.
3.3. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a powerful exploratory
data analysis method that allows finding patterns in data through
a visual approach. It provides a graphic representation of the rela-
tionships between samples and variables and provides insights
into how measured variables cause some samples to be similar
to, or different from, each other. It can thus be used to reveal a hid-
den structure within large or complex data sets. As it simulta-
neously takes into account all of the variables involved, it can be
a powerful tool in hydrochemical studies. The algorithm trans-
forms a number of possibly correlated variables into a smaller
number of uncorrelated (orthogonal) variables, called Principal
Components. The first Principal Component explains as much of
the variability in the data as possible, and each succeeding compo-
nent explains as much of the remaining variability as possible. The
results of a PCA model are usually analyzed by interpreting the
resulting Score and the Loading plot. The former describes the
coordinates of the objects (samples) on the PCs and allows finding
sample differences or similarities, while the latter shows the data
structure in terms of variable contributions and correlations. Prin-
cipal Component Analysis was performed using the software The
Unscrambler (version X – CAMO AS, Trondheim, Norway) by apply-
ing the Nonlinear Iterative Partial Least Squares (NIPALS) algo-
rithm. The NIPALS algorithm was developed by Wold et al.
(1987), first for PCA and later for PLS, and has become the most
commonly used method for calculating the principal components
of a data set. It gives more numerically accurate results when com-
pared with the SVD (singular value decomposition) of the covari-
ance matrix and dramatically reduces the computational time
since calculation of the covariance matrix is avoided. Prior to the
calculation, autoscaling was performed in order to give all of the
variables an equal chance to influence the PC construction. This
pretreatment produces variables with zero mean and unit standard
deviation. Loading and score plots for the first informative princi-
pal components were discussed. Data below the limit of detection
were replaced with half of the detection limit (LOD/2). The alterna-
tive choice of filling data with any numbers lying between LOD and
zero did not significantly change patterns in the score plot.
4. Results

4.1. Geostructural data

The geostructural studies were carried out using remote sensing
to identify the main lineaments and the detailed geostructural sur-
vey. The geostructural sites are distributed in three zones (Fig. 3):



Fig. 5. Score (a) and loading (b) plots of PC1 vs. PC2; Score (c) and loading (d) plots of PC2 vs. PC3; score (e) and loading (f) plots of PC3 vs. PC4. Springs that rise in crystalline
basement and springs in sedimentary cover are represented in light grey and black colours, respectively, in score plots.
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the high Val Senagra (Sites12, 13, 14, 15, 16, 17 and 18), the Nobi-
allo (Sites1, 2, 3, 4, 5 and 6) and the Plesio (Sites 7, 8, 9 and 10)
areas. In the Val Senagra area, the remote sensing identified E–
W, NE–SW and NW–SE trends of lineaments. Three main fracture
systems were measured in this area (Fig. 3): one in the direction
from WNW–ESE to NW–SE (trend of the valley), one with an
approximately N–S direction and the third one NE–SW directed.
Two strike-slip faults were also measured, with E–W and ENE–
WSW trends, respectively, approximately parallel to the Grona
fault. In the Nobiallo area, the NE–SW oriented lineaments were
identified, and one persistent E–W fracture system and one ori-
ented from NNE–SSW to NE–SW were surveyed (Fig. 3). These sys-



Fig. 6. Conductivity (a), Si (b) and HCO�3 (c) contourings.

Fig. 7. PC1-scores (a) and PC2-scores (b) contourings.

20 R. Gambillara et al. / Applied Geochemistry 33 (2013) 13–24
tems appear to be associated with the Grona and Breglia faults. The
area of Plesio is characterized by the presence of E–W, NE–SW and
NW–SE lineaments and by the NE–SW directed measured fracture
system, which is oriented like the Breglia fault.
4.2. Chemical data

The hydrochemical data are shown in Table 2. Physical chemical
parameters vary in the following ranges: temperature from 7.9 �C
(Mn13 and Pl2) to 11.5 �C (Mn9 and Cz4); pH from 6.02 (Gd1) to
8.17 (Mn16); EC from 39.4 lS/cm (Cz5) to 607 lS/cm (Mn3). Che-
botarev and triangular diagrams permitted the identification of
three main types of water (Fig. 4): the first one (Mn5, Mn10,
Mn11, Mn12, Mn13 and Mn14) is characterized by high contents
of HCO�3 and Ca2+; the second one (Mn2, Mn3, Mn7, Mn9, Mn15,
Mn16, Pl1, Pl2, Pl3, Pl7, Pl8, Cz3, Cz4, Cz5, Cz6 and Gd2) is HCO�3 ,
Ca2+ and Mg2+ enriched; the third one (Pl4, Pl5, Pl6, SS1, SS2, SS3
and SS4) is characterized by high contents of HCO�3 and Ca2+ and
an increase in SO2�

4 and/or Na+ + K+ compared with the others.
The water of Gd1 spring is SO2�

4 and Na+ + K+ enriched; this sample
differs from the main types of water previously described.
An exploratory PCA analysis was performed on the dataset to
obtain additional features in the investigated springs (Wold et al.,
1987; Brereton, 2007). Principal Components one to four (labelled
in Fig. 5 as PC1, PC2, PC3 and PC4), accounting for 78% of the data
variance, were considered for the interpretation (following PCs did
not add relevant information). Bidimensional score and loading
plots were interpreted. The two first principal components account
for 52% (PC1 32%, PC2 20%) of the total information (Fig. 5a and b).
Loading plot PC1 vs. PC2 shows a correlation between dissolved sil-
ica and As (labelled as Si and As), which occupy the lower left part
of the diagram. They are inversely correlated to Ca2+, Mg2+, HCO�3 ,
which lie in the opposite quadrant (Fig. 5b). In the score plot
(Fig. 5a), samples seem to lie homogeneously around the model
centre, but Mn2 and Mn3 assume a peculiar position at high posi-
tive values of PC1 and negative values of PC2. This could be as-
cribed to high levels of Na+, K+ and B, as emerges looking at the
loading plot. Studying the score plot for better insight, a trend in
the samples emerges.

The study of the second and third principal components (PC2
20%–PC3 18%) gives more interesting information concerning
Mn2 and Mn3 spring samples. In the score plot PC2 vs. PC3
(Fig. 5c), they are located near the SS2, SS3 and SS4 springs; this



Fig. 8. Bivariate plots of Ca2+ vs. Mg2+ (a), F� vs. SO2
4 (b), K+ vs. Si (c) and Na+ vs. Si (d).
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position depends on the dissolved silica and As contents, as
emerges from the loading plot PC2 vs. PC3 (Fig. 5d). More interest-
ing information concerns the location of the Cz4 spring in the
upper right zone of the diagram (Fig. 5c) that is due to the Rn
(222Rn) and F� contents. PC3 vs. PC4 score plots (Fig. 5e and f) con-
firm the linking of the Cz4 spring with Rn and F�; furthermore,
these PCs highlight an enrichment in Ca2+ for springs located in
the left lower quadrant (Mn5, Mn10, Mn11, Mn12, Mn13 and
Mn14; Fig. 5e).
The score values for each sample on PC1 and PC2 were also em-
ployed to draw a contour plot, the results of which are discussed in
the following section.
5. Discussion

Hydrochemical data, derived from Chebotarev triangular dia-
grams and PCA, were compared with the lithology of springs and
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geostructural data in order to characterize the complex groundwa-
ter systems of the study area. To accurately identify these flow
paths, specific bivariate plots and contouring were implemented.
The spatial distribution of EC, Si, HCO�3 , PC1 and PC2 values can
be observed in Figs. 6 and 7. EC (Fig. 6a) and HCO�3 (Fig. 6c) values
are high in the central and southern part of the study area (south of
the Grona fault, Fig. 1), in accordance with the presence of carbon-
ate rocks. The analysis of the spatial distribution of Si (Fig. 6b)
shows two areas with high concentrations in the NE part of the
study area and between Plesio and Nobiallo. The first one is the re-
gion of the crystalline basement (Celico, 1986; Faure, 1996). In
contrast, the second one is atypical because in this area only car-
bonate rocks outcrop. The spatial distribution of the PC1 values
(Fig. 7a) shows conditions similar to those illustrated in the EC
and HCO�3 contours. However, it highlights a particular area near
the Mn7 and Mn9 springs, where there is a plume of low values
of PC1 ascribable to the drainage effect of the Breglia fault, which
carries water from the crystalline basement. This effect is also
showed for the Mn2 and Mn3 springs in the PC2 contour (Fig. 7b).

For a better characterization of some particular leaching condi-
tions (Fig. 8), the following bivariate plots were used: F� vs. SO2

4, to
evaluate the leaching of an evaporite body (SO2�

4 ) and, generally,
the depth of circulation (F�); Na+ vs. Si and K+ vs. Si, to study the
water interaction with the crystalline basement; and Ca2+ vs.
Mg2+, to discriminate the waters that leach dolomite rocks or lime-
stone. The matching of the results given by all plots allows the
identification of three main groups of water in agreement with
the rocks in which they arise. Group I (Mn5, Mn10, Mn11, Mn12,
Mn13 and Mn14) is characterized by Ca2+, HCO�3 and Mg2+ enrich-
ment with Mg2+/Ca2+ ratios less than 1 (Ca2+ > Mg2+); these waters
flow in limestone. Group II (Mn16, Pl3, Pl4, Pl5 Pl7, Pl8, Cz3, Cz5,
Cz6 and Gd2) is enriched in HCO�3 and Ca2+ and Mg2+ with Ca/Mg
ratios near 1 and circulates in dolomite rocks. Group III (Pl6, SS1,
SS2, SS3 and SS4) is characterized by a decrease of Ca2+ and Mg2+

content, an increase of Na+ + K+ and a high Si/EC ratio; this group
flows in the basement rocks.

Some peculiarities were noted, specifically in the Mn2, Mn3,
Mn7, Mn9, Mn15, Cz4, Pl1, Pl2 and Gd1 springs (see Tables 1 and
2). Springs Mn2 and Mn3 are located near Plesio in glacial deposits
that cover dolomite rocks (Fig. 1). Their hydrogeochemistry shows
behaviour typical of waters that have leached dolomite rocks (Ca2+

vs. Mg2+ ratio near 1 and HCO�3 enrichment; Celico, 1986; Faure,
1996; Civita, 2005), but the PCA analysis (Fig. 5) and Na+ vs. Si
(Fig. 8d) and K+ vs. Si bivariate plots (Fig. 8c) show B, Na+, K+, As
and Si anomalies. The B anomaly is generated by the low value
Table 1
Lithology location of springs.

Name Lithology

Menaggio springs
Mn2 Glacial deposit
Mn3 Glacial deposit
Mn5 Limestone (Zu Limestone)
Mn7 Bituminous limestone (Zorzino Formation)
Mn9 Bituminous limestone (Zorzino Formation)
Mn10 Bituminous limestone (Zorzino Formation)
Mn11 Limestone (Zu Limestone)
Mn12 Bituminous limestone (Zorzino Formation)

Mn13 Bituminous limestone (Zorzino Formation)
Mn15 Bituminous limestone (Zorzino Formation)
Mn16 Bituminous limestone (Zorzino Formation)

Carlazzo springs
Cz3 Dolomite (Dolomia Principale)
Cz4 Bituminous limestone (Zorzino Formation)
Cz5 Dolomite (Dolomia Principale)
Cz6 Dolomite (Dolomia Principale)
(proximal to LOD) of this element in the water that does not permit
significant discrimination. The Na+, K+, As and Si anomalies may re-
sult from water circulation in glacial deposits and then in dolomite
rocks, or from deeper circulation that intersects the crystalline
basement (Celico, 1986; Faure, 1996; Banks et al., 1998; Civita,
2005) to the north of the Grona fault. The first case is excluded be-
cause the moderately high EC values (Mn2 472 lS/cm; Mn3
607 lS/cm; Table 2; Nordstrom et al., 1989; Faure, 1996; Civita,
2005) suggest deeper circulation. The second case is more plausi-
ble: the role of the Breglia fault system, as a drain, generates mix-
ing between the water that circulates in the crystalline basement
(Na+, K+, As and Si enrichment) in the north and the water that cir-
culates in dolomite rocks (Ca2+ Mg2+ and HCO�3 enrichment) in the
south. The second case is also confirmed by geostructural analysis
and remote sensing that show a persistent fracture system ori-
ented NE–SW near the Mn2 and Mn3 springs (Figs. 1 and 3) and
by Si contouring, which shows a plume in this area.

The role played by the Breglia fault system in groundwater cir-
culation is also demonstrated by the Mn7 and Mn9 springs. They
rise in bituminous limestone of the Zorzino Formation (Table 1),
but their waters show chemical features typical of circulation in
dolomite rocks: the Ca/Mg ratios are close to one (Fig. 8a). This
type of anomaly could be due to the fault promoting the rise of
deep waters that leached dolomite of Dolomia Principale; the re-
mote sensing and the structural analysis, in fact, also highlight
the presence of the Breglia Fault system in this area (Fig. 3).

The Cz4 spring rises in bituminous limestone of the Zorzino For-
mation (Table 1), but shows a Ca2+, Mg2+ and HCO�3 enrichment
(circulation in dolomite). The remote sensing (Fig. 3) highlights
an E–W lineament that suggests the presence of a fault, confirmed
also by the 222Rn concentration (105 Bq/L; Table 2; Banks et al.,
1998; Pascale et al., 2011). This fault brings up water from the
underlying Dolomia Principale. The hypothesis of deep circulation
is also supported by the F� anomaly (Figs. 5c and d, and 8b) and
SO2�

4 (Fig. 8b) and EC (439 lS/cm) values (Table 2 and Fig. 6a; Celic-
o, 1986; Nordstrom et al., 1989; Banks et al., 1998; Salih et al.,
2004; Civita, 2005; Kim and Jeong, 2005). In particular, the high
SO2�

4 concentration could be ascribed to the leaching of Dolomia
Principale evaporite bodies.

The Mn15 spring rises in bituminous limestone of the Zorzino
Formation (Table 1), but shows a Ca2+, Mg2+ and HCO�3 enrichment
(circulation in dolomite). The remote sensing and geological set-
ting (Figs. 1 and 3), in this case, do not reveal the presence of a
fault, but the 222Rn concentration (40.2 Bq/L; Table 2; Banks
et al., 1998; Pascale et al., 2011), similar to the Cz4 spring, suggests
Name Lithology

Plesio springs
Pl1 Muscovite orthogneiss
Pl2 Muscovite orthogneiss
Pl3 Dolomite (Dolomia Principale)
Pl4 Dolomite (Dolomia Principale)
Pl5 Glacial deposit
Pl6 Glacial deposit
Pl7 Glacial deposit
Pl8 Dolomite (Dolomia Principale)

Grandola ed Uniti springs
Gd1 Glacial deposit
Gd2 dolomite (Dolomia Principale)

San Siro springs
SS1 Micaschist and staurolite gneiss
SS2 Glacial deposit
SS3 Micaschist and staurolite gneiss
SS4 Micaschist and staurolite gneiss



Table 2
Geochemical data of studied groundwaters.

Spring
ID

Temp.
(�C)

pH Cond.
(mS/cm)

Radon
(Be/L)

SiO2

(mg/L)
HCO�3
(meq/L)

F�(meq/
L)

Cl-(meq/
L)

NO�3
(meq/
L)

SO2�
4

(meq/L)

Na+

(meq/
L)

K+

(meq/
L)

Ca2+

(meq/
L)

Mg2+

(meq/L)
NHþ4
(meq/
L)

Li
(mg/
L)

B
(mg/
L)

Mn
(mg/
L)

Fe
(mg/
L)

As
(mg/
L)

Mn2 9.8 6.84 472 26.5 3.15 5.28 0.007 0.21 0.29 0.55 0.45 0.10 3.45 2.48 0.058 0.60 27.5 <LOD 65 13
Mn3 10.5 6.87 607 10.6 4.36 5.98 0.007 0.30 0.54 0.86 0.42 0.15 4.75 3.07 0.086 1.35 28.0 <LOD 84 5.3
Mn5 9.7 6.67 409 4.21 2.02 5.03 0.012 0.024 0.093 0.31 0.14 0.068 4.72 0.99 0.114 2.43 14.0 0.049 101 <LOD
Mn7 11.3 7.66 350 – 1.99 3.87 0.007 0.058 0.11 0.14 0.11 0.052 2.34 1.83 0.083 0.076 3.53 0.18 49.5 6.2
Mn9 11.5 7.99 308 12.0 2.14 3.27 0.010 0.031 0.10 0.13 0.098 0.051 2.11 1.54 0.101 0.17 2.09 0.18 47.6 4.2
Mn10 8.4 7.30 412 11.6 1.73 4.61 0.008 0.033 0.11 0.34 0.089 0.035 3.89 0.99 0.062 0.94 9.56 <LOD 887 0.14
Mn11 8.3 7.54 417 23.8 1.57 4.64 0.008 0.036 0.11 0.35 0.081 0.021 4.42 0.92 0.092 1.16 8.94 0.047 986 0.21
Mn12 8.0 7.44 406 11.6 1.79 4.63 0.012 0.028 0.11 0.32 0.081 0.022 4.08 1.00 0.068 1.05 9.87 0.070 922 0.18
Mn13 7.9 6.55 354 5.82 2.29 3.34 0.012 0.025 0.098 0.75 0.083 0.029 3.22 1.17 0.10 5.62 19.1 0.11 802 0.082
Mn14 8.6 7.20 379 18.0 2.08 5.49 0.008 0.027 0.087 0.33 0.099 0.036 5.20 0.94 0.11 2.12 13.4 0.078 1204 0.14
Mn15 8.1 7.51 469 40.2 0.88 5.31 0.008 0.34 0.17 0.20 0.30 0.039 3.36 2.81 0.12 0.15 1.57 <LOD 843 0.47
Mn16 11.0 8.17 339 3.19 0.51 3.83 0.007 0.022 0.071 0.10 0.037 0.007 2.18 2.03 0.076 0.11 2.00 0.20 594 0.73
Pl1 8.2 7.66 147 32.1 3.13 1.19 0.020 0.038 0.033 0.20 0.073 0.013 0.78 0.52 0.017 0.29 1.46 0.059 217 5.2
Pl2 7.9 8.04 150 5.24 3.12 1.26 0.013 0.030 0.045 0.21 0.074 0.014 0.77 0.54 0.033 0.31 1.52 0.081 192 6.0
Pl3 8.4 7.80 153 – 3.25 1.21 0.014 0.029 0.064 0.25 0.082 0.018 0.81 0.51 0.038 0.33 2.18 0.12 225 5.7
Pl4 8.9 7.67 133 49.2 4.26 0.68 0.015 0.022 0.022 0.38 0.091 0.014 0.73 0.25 0.011 0.74 2.29 0.12 224 25
Pl5 9.0 7.26 101 49.7 4.69 0.56 0.017 0.026 0.039 0.36 0.11 0.020 0.57 0.22 0.034 0.94 2.36 0.19 141 6.7
Pl6 9.2 7.27 58.5 103 4.65 0.50 0.020 0.041 0.030 0.18 0.12 0.021 0.44 0.086 0.028 0.70 1.73 0.12 102 27
Pl7 10.8 7.61 219 16.4 0.89 3.29 0.012 0.033 0.10 0.13 0.031 0.006 1.70 1.56 0.027 0.22 2.33 0.16 494 0.88
Pl8 10.5 7.44 327 19.0 0.62 3.34 0.011 0.016 0.076 0.09 0.026 0.002 1.71 1.56 0.023 0.22 2.62 0.13 472 0.46
SS1 9.0 7.46 86.0 6.17 4.39 0.68 0.005 0.034 0.046 0.11 0.13 0.023 0.59 0.12 0.048 1.25 1.20 <LOD 27 1.8
SS2 11.0 6.80 86.0 64.2 5.34 0.74 0.008 0.051 0.031 0.22 0.22 0.050 0.57 0.26 0.050 5.13 2.16 0.13 30 11
SS3 10.8 7.00 75.0 18.5 7.12 0.62 0.004 0.032 0.033 0.24 0.24 0.052 0.38 0.19 0.059 3.11 2.06 0.21 69 4.1
SS4 13.0 7.33 195 13.9 5.90 1.24 0.032 0.049 0.055 0.45 0.33 0.068 1.18 0.39 0.049 3.82 2.77 0.18 13 20
Cz3 8.1 7.25 257 29.3 2.42 2.49 0.10 0.20 0.38 0.38 0.060 0.023 1.71 1.50 0.006 0.32 2.31 0.067 384 1.1
Cz4 11.5 6.84 439 105 1.66 3.02 0.11 0.25 0.55 1.13 0.056 0.024 2.64 2.10 0.017 0.21 7.97 0.11 637 0.59
Cz5 11.4 7.14 39.4 73.8 0.57 2.41 0.099 0.15 0.21 0.60 0.028 0.005 1.85 1.73 0.024 0.17 2.01 0.17 484 0.36
Cz6 10.4 7.37 291 – 0.21 2.81 0.061 0.14 0.31 0.46 0.034 0.009 1.86 1.70 0.042 0.20 2.01 0.11 461 0.24
Gd1 8.6 6.02 51.9 25.6 4.64 0.13 0.070 0.11 0.16 0.24 0.25 0.048 0.23 0.12 0.072 1.00 1.97 0.018 51 2.4
Gd2 8.6 6.42 288 – 2.92 2.22 0.10 0.097 0.18 0.17 0.084 0.025 1.48 1.33 0.017 0.43 2.72 0.16 436 1.5
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the presence of a fault that brings water from the overlying Conch-
odon Dolomite.

The Pl1 and Pl2 springs lie in muscovite orthogneiss (Table 1),
but reflect a dolomite water chemistry (Ca2+, Mg2+ and HCO�3
enrichment). These springs are located to the north of the Grona
Fault system in muscovite orthogneiss near the contact with Dolo-
mia Principale (Fig. 1). The geostructural analysis shows strong
rock fracturing (Fig. 3) that conveys the dolomite water to the
north, stepping over the Grona Fault. This circulation generates
mixing between crystalline and dolomite water. The mixing is also
confirmed by the anomaly for As and 222Rn (Fig. 5a and b) of Pl1,
Pl2.

The Gd1 spring shows a short circuit (EC: 51.90 lS/cm; Table 2;
Celico, 1986; Civita, 2005) that leaches heterogeneous glacial
deposits. This spring is enriched in SO2�

4 , Cl�, Ca2+ and Na+: the
SO2�

4 and Ca2+ value is due to interaction with gypsum deriving
from freezing/thawing of the permafrost active layer in the past;
Cl� and Na+ result from the leaching of clay minerals.
6. Conclusions

This study demonstrates the relevance of a multidisciplinary
investigation to obtain a complete picture of the groundwater sys-
tems in a complex of mountain aquifers. They are controlled by the
tectonic setting, making understanding of their flow path extre-
mely difficult when outcrops are missing. Hydrochemical data play
a major role in circulation tracing. The groundwater system of Lake
Como was investigated using geostructural, chemical and chemo-
metric analyses. The geostructural data, in agreement with the re-
mote sensing, show three main fracture systems (E–W, NE–SW and
NW–SE); they are related to Grona and Breglia fault systems. The
hydrochemistry (ground water chemistry and PCA) allowed identi-
fication of waters that leach limestones, dolomite and crystalline
rocks.

The matching of hydrochemical and geostructural information
explains the role played by faults in water circulation. In particular,
the Mn2 and Mn3 springs show mixing between the sub-surface
water that leaches dolomite rocks, and deep water that circulates
in the crystalline basement, brought up by the Breglia fault. The
role played by this fault system in groundwater circulation is also
evident for the Mn7 and Mn9 springs that rise in the Zorzino For-
mation (limestone); the Breglia fault permits the rise of deep water
that leaches the underlying Dolomia Principale. The occurrence of
the fault is revealed by hydrochemical data and remote sensing
analysis, whereas the geostructural survey cannot give information
because of the lack of outcrops. Similarly, the Grona fault plays a
role on drainage in the proximity of the Pl1 and Pl2 springs. They
are in muscovite orthogneiss but reflect a dolomite water chemis-
try. The strong rock fracturing conveys the dolomite water to the
north, stepping over the Grona Fault. The power of the multidisci-
plinary approach is also confirmed by study of the Cz4 and Mn15
springs. This approach permitted understanding the groundwater
system and identifivation of fault systems not detectable with a
geostructural survey. The use of only geostructural or hydrochem-
ical methods in complex mountain aquifers is not sufficient to
understand the groundwater flow paths; the relationship of water
circulation with the fault and the fracture systems may only be as-
sessed by a multidisciplinary approach. In this way, the alignment
of the area can be clearly identified and spring waters in mountain
areas better exploited.
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