10,576 research outputs found

    Early detection of a solar flare - A study of X-ray, extreme ultraviolet, H-alpha, and solar radio emission from solar flares

    Get PDF
    X ray, extreme ultraviolet, H alpha, and radio emission from solar flares evaluated for use in satellite flare alarm syste

    Dynamic Power Spectral Analysis of Solar Measurements from Photospheric, Chromospheric, and Coronal Sources

    Get PDF
    An important aspect in the power spectral analysis of solar variability is the quasistationary and quasiperiodic nature of solar periodicities. In other words, the frequency, phase, and amplitude of solar periodicities vary on time scales ranging from active region lifetimes to solar cycle time scales. Here, researchers employ a dynamic, or running, power spectral density analysis to determine many periodicities and their time-varying nature in the projected area of active sunspot groups (S sub act). The Solar Maximum Mission/Active Cavity Radiometer Irradiance Monitor (SMM/ACRIM) total solar irradiance (S), the Nimbus-7 MgII center-to-wing ratio (R (MgII sub c/w)), the Ottawa 10.7 cm flux (F sub 10.7), and the GOES background x ray flux (X sub b) for the maximum, descending, and minimum portions of solar cycle 21 (i.e., 1980 to 1986) are used. The technique dramatically illustrates several previously unrecognized periodicities. For example, a relatively stable period at about 51 days has been found in those indices which are related to emerging magnetic fields. The majority of solar periodicities, particularly around 27, 150 and 300 days, are quasiperiodic because they vary in amplitude and frequency throughout the solar cycle. Finally, it is shown that there are clear differences between the power spectral densities of solar measurements from photospheric, chromospheric, and coronal sources

    Parity violation in quasielastic electron-nucleus scattering within the relativistic impulse approximation

    Get PDF
    We study parity violation in quasielastic (QE) electron-nucleus scattering using the relativistic impulse approximation. Different fully relativistic approaches have been considered to estimate the effects associated with the final-state interactions. We have computed the parity-violating quasielastic (PVQE) asymmetry and have analyzed its sensitivity to the different ingredients that enter in the description of the reaction mechanism: final-state interactions, nucleon off-shellness effects, current gauge ambiguities. Particular attention has been paid to the description of the weak neutral current form factors. The PVQE asymmetry is proven to be an excellent observable when the goal is to get precise information on the axial-vector sector of the weak neutral current. Specifically, from measurements of the asymmetry at backward scattering angles good knowledge of the radiative corrections entering in the isovector axial-vector sector can be gained. Finally, scaling properties shown by the interference γZ\gamma-Z nuclear responses are also analyzed.Comment: 15 pages, 11 figure

    Vortex nucleation by collapsing bubbles in Bose-Einstein condensates

    Full text link
    The nucleation of vortex rings accompanies the collapse of ultrasound bubbles in superfluids. Using the Gross-Pitaevskii equation for a uniform condensate we elucidate the various stages of the collapse of a stationary spherically symmetric bubble and establish conditions necessary for vortex nucleation. The minimum radius of the stationary bubble, whose collapse leads to vortex nucleation, was found to be about 28 healing lengths. The time after which the nucleation becomes possible is determined as a function of bubble's radius. We show that vortex nucleation takes place in moving bubbles of even smaller radius if the motion made them sufficiently oblate.Comment: 4 pages, 5 figure

    Computational convergence of the path integral for real dendritic morphologies

    Get PDF
    Neurons are characterised by a morphological structure unique amongst biological cells, the core of which is the dendritic tree. The vast number of dendritic geometries, combined with heterogeneous properties of the cell membrane, continue to challenge scientists in predicting neuronal input-output relationships, even in the case of sub-threshold dendritic currents. The Green’s function obtained for a given dendritic geometry provides this functional relationship for passive or quasi-active dendrites and can be constructed by a sum-over-trips approach based on a path integral formalism. In this paper, we introduce a number of efficient algorithms for realisation of the sum-over-trips framework and investigate the convergence of these algorithms on different dendritic geometries. We demonstrate that the convergence of the trip sampling methods strongly depends on dendritic morphology as well as the biophysical properties of the cell membrane. For real morphologies, the number of trips to guarantee a small convergence error might become very large and strongly affect computational efficiency. As an alternative, we introduce a highly-efficient matrix method which can be applied to arbitrary branching structures

    The Interface between Quantum Mechanics and General Relativity

    Full text link
    The generation, as well as the detection, of gravitational radiation by means of charged superfluids is considered. One example of such a "charged superfluid" consists of a pair of Planck-mass-scale, ultracold "Millikan oil drops," each with a single electron on its surface, in which the oil of the drop is replaced by superfluid helium. When levitated in a magnetic trap, and subjected to microwave-frequency electromagnetic radiation, a pair of such "Millikan oil drops" separated by a microwave wavelength can become an efficient quantum transducer between quadrupolar electromagnetic and gravitational radiation. This leads to the possibility of a Hertz-like experiment, in which the source of microwave-frequency gravitational radiation consists of one pair of "Millikan oil drops" driven by microwaves, and the receiver of such radiation consists of another pair of "Millikan oil drops" in the far field driven by the gravitational radiation generated by the first pair. The second pair then back-converts the gravitional radiation into detectable microwaves. The enormous enhancement of the conversion efficiency for these quantum transducers over that for electrons arises from the fact that there exists macroscopic quantum phase coherence in these charged superfluid systems.Comment: 22 pages, 7 figures; Lamb medal lecture on January 5, 2006 at the Physics of Quantum Electronics Winter Colloquium at Snowbird, Utah; accepted for publication in J. Mod. Optic
    corecore