7 research outputs found

    Cardiovascular effects of intravenous vatinoxan in wild boars (Sus scrofa) anaesthetised with intramuscular medetomidine-tiletamine-zolazepam

    Get PDF
    Background The potent sedative medetomidine is a commonly used adjunct for the immobilisation of non-domestic mammals. However, its use is associated with pronounced cardiovascular side effects, such as bradycardia, vasoconstriction and decreased cardiac output. We investigated the effects of the peripherally-acting alpha-2-adrenoceptor antagonist vatinoxan on cardiovascular properties in medetomidine-tiletamine-zolazepam anaesthetised wild boar (Sus scrofa). Methods Twelve wild boars, anaesthetised twice with medetomidine (0.1 mg/kg) and tiletamine/zolazepam (2.5 mg/kg) IM in a randomised, crossover study, were administered (0.1 mg/kg) vatinoxan or an equivalent volume of saline IV (control). Cardiovascular variables, including heart rate (HR), mean arterial blood pressure (MAP), pulmonary artery pressure (PAP), pulmonary artery occlusion pressure (PAOP) and cardiac output (CO), were assessed 5 min prior to vatinoxan/saline administration until the end of anaesthesia 30 min later. Results MAP (p < 0.0001), MPAP (p < 0.001) and MPAOP (p < 0.0001) significantly decreased from baseline after vatinoxan until the end of anaesthesia. HR increased significantly (p < 0.0001) from baseline after vatinoxan administration. However, the effect on HR subsided 3 min after vatinoxan. All variables remained constant after saline injection. There was no significant effect of vatinoxan or saline on CO. Conclusion Vatinoxan significantly reduced systemic and pulmonary artery hypertension, induced by medetomidine in wild boar.Peer reviewe

    Thermal Adaptation and Diversity in Tropical Ecosystems: Evidence from Cicadas (Hemiptera, Cicadidae)

    Get PDF
    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54′ of longitude and 21°4′ of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors

    Contributors

    Full text link
    corecore