272 research outputs found

    Surface quality related to machining parameters in 3D-printed PETG components

    Get PDF
    Fused Deposition Modeling (FDM) finds extensive application across various fields due to its cost-effectiveness and user-friendly nature. However, it does come with certain limitations, including challenges in achieving high surface quality, precise dimensional tolerance, and the characteristic anisotropic mechanical properties it exhibits. The aim of this paper is to investigate the machinability of 3D-printed PETG and analyze the roughness and burr formation that occurs as a result. A Design of Experiments (DoE) was developed with three factors: rotational speed, feed rate, and depth of cut. Each factor had different levels: rotational speed at 3000, 5500, and 8000 rpm; feed rate at 400, 600, and 800 mm/min; and depth of cut at 0.2, 0.4, 0.6, and 0.8 mm. The machinability was evaluated based on two response parameters: roughness (Sa), determined on the milled surface, and burr height, measured using a profilometer on both sides of the milled surface. The findings indicate that milling parameters strongly affect roughness and burr formation. However, the optimal conditions for minimizing roughness and burr formation are not coincident. The results were also compared to the machinability of PLA machined under similar conditions

    Sustainability Study of a New Solid-State Aluminum Chips Recycling Process: A Life Cycle Assessment Approach

    Get PDF
    Nowadays, reducing greenhouse gas emissions in all human activities has become crucial. This article presents a life cycle assessment (LCA) investigation conducted to evaluate the environmental benefits of a newly developed solid-state recycling process for aluminum chips, involving two steps: direct rolling and accumulative roll bonding. A comparison was made between this process and two current industrial methods of recycling aluminum scraps to obtain wrought products, which involve melting, casting, and subsequent rolling. The LCA analysis considered a scenario where 50% of the total electric requirement was met by photovoltaic energy. The results of the study indicate that in all examined impact categories, direct rolling has a lower environmental footprint compared to both traditional recycling and twin-roll cast technology. These results suggest that this new solid-state recycling procedure has significant potential to replace environmentally harmful melting processes

    Surface Quality Related to Face Milling Parameters in 3D Printed Carbon Fiber-Reinforced PETG

    Get PDF
    Three-dimensional printing technology holds significant potential for enhancing the flexibility and cost-efficiency of producing carbon fiber-reinforced polymer composites (CFRPs). However, it faces limitations such as challenges in achieving high surface qualityand precise dimensional accuracy and managing the distinctive anisotropic mechanical properties that it demonstrates. This study aims to explore the machinability of 3D printed PETG infused with 20% short carbon fiber and to assess the resulting surface roughness and burr formation. Employing a Design of Experiments (DoE) approach, three factors were considered: rotational speed, feed rate, and depth of cut. These factors were tested at varying levels—rotational speeds of 3000, 5500, and 8000 rpm; feed rates of 400, 600, and 800 mm/min; and depth of cut values of 0.2, 0.4, 0.6, and 0.8 mm. The evaluation of machinability relied on two key response parameters: surface roughness (Sa) determined from the milled surface and burr height measured on both sides using a roughness meter. The findings revealed a significant influence of milling parameters on both roughness and burr formation. However, the ideal conditions for minimizing roughness and reducing burr formation did not align. Furthermore, a comparative analysis was conducted between these results and the machinability of PETG under similar conditions

    Effect of Selective Z-Pinning on the Static and Fatigue Strength of Step Joints between Composite Adherends

    Get PDF
    The z-pinning reinforcement technique, which involves inserting thin pins through the body of a laminate, has proven highly effective in enhancing the strength of various composite joint configurations. This investigation aims to explore the enhancements achievable through selective z-pinning at very low pin contents on both the static and fatigue performance of composite joints. Single-step joints between carbon/epoxy adherends were reinforced using steel pins arranged in two, three, or four rows of pins parallel to the edges of the overlap, resulting in pin contents ranging from 0.2% to 0.4%. Joint panels were manufactured through co-curing, and coupons were extracted from the panels for static and fatigue tensile testing. The experimental tests show that z-pinning improves the static strength (by about 15%) and extends the fatigue lives of the joints. The ultimate failure of both unpinned and pinned joints is due to the unstable propagation of a crack at the bond line. The superior performances of pinned joints are mainly due to the bridging tractions imposed between the crack faces by z-pins, which delay the growth of the debonding crack. The enhancements in static and fatigue strength achieved by z-pinning were essentially independent of the number of pin rows, and the pins positioned near the joint edges were found to play a dominant role in controlling the structural performance of pinned joints

    Retrospective Review of Pectoralis Major Ruptures in Rodeo Steer Wrestlers

    Get PDF
    Background. Pectoralis major tendon ruptures have been reported in the literature as occupational injuries, accidental injuries, and sporting activities. Few cases have been reported with respect to rodeo activities. Purpose. To describe a series of PM tendon ruptures in professional steer wrestlers. Study Design. Case series, level of evidence, 4. Methods. A retrospective analysis of PM ruptures in a steer wrestling cohort was performed. Injury data between 1992 and 2008 were reviewed using medical records from the University of Calgary Sport Medicine Center. Results. Nine cases of pectoralis major ruptures in professional steer wrestlers were identified. Injuries occurred during the throwing phase of the steer or while breaking a fall. All athletes reported unexpected or abnormal behavior of the steer that contributed to the mechanism of injury. Seven cases were surgically repaired, while two cases opted for nonsurgical intervention. Eight cases reported successful return to competition following the injury. Conclusion. Steer wrestlers represent a unique cohort of PM rupture case studies. Steer wrestling is a demanding sport that involves throwing maneuvers that may predispose the muscle to rupture. All cases demonstrated good functional outcomes regardless of surgical or non-surgical treatment

    Characterizing Nature and Participant Experience in Studies of Nature Exposure for Positive Mental Health: An Integrative Review

    Get PDF
    A growing number of studies demonstrate significant associations between nature experiences and positive mental health outcomes (e.g., improved mood, decreased stress). However, implementation of this research by practitioners in fields such as urban design or public health has been limited. One reason for this is that it remains unclear what elements of nature and types of participant experience are consistently associated with mental health benefits. As a result, decision-makers who aim to enhance mental health in cities have little guidance about which elements of nature and types of experiences in natural areas may lead to positive mental health outcomes. We reviewed 30 studies with 41 distinct exposures in nature that elicited positive mental health benefits and characterized the elements of nature found at these sites, as well as aspects of participants’ experience. Elements of natural areas considered include: forest, managed grass, and water as dominant land cover types, specific water features (e.g., small ponds, fountains) and built features (e.g., trails, paths). The majority of the studies we reviewed assessed the experiences of individuals (vs. in groups) participating in walks during warmer seasons. Most studies did not describe the “nature of the nature” associated with positive mental health outcomes. We contacted authors and used Google Earth imagery to reconstruct the specific natural elements, landscape typology, and site adjacencies present in past studies. We recommend specific ways researchers could better and more transparently document important elements of nature and participant experience in study design and reporting that will enhance the planning and design relevance of their work

    Glacial to Holocene swings of the Australian–Indonesian monsoon

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 4 (2011): 540–544, doi:10.1038/ngeo1209.The Australian-Indonesian monsoon is an important component of the climate system in the tropical Indo-Pacific region. However, its past variability, relation with northern and southern high latitude climate and connection to the other Asian monsoon systems are poorly understood. Here we present high-resolution records of monsoon-controlled austral winter upwelling during the past 22,000 years, based on planktic foraminiferal oxygen isotope and faunal composition in a sedimentary archive collected offshore southern Java. We show that glacial-interglacial variations in the Australian-Indonesian winter monsoon were in phase with the Indian summer monsoon system, consistent with their modern linkage through cross-equatorial surface winds. Likewise, millennial-scale variability of upwelling shares similar sign and timing with upwelling variability in the Arabian Sea. On the basis of element composition and grain-size distribution as precipitation-sensitive proxies in the same archive, we infer that (austral) summer monsoon rainfall was highest during the Bølling-Allerød period and the past 2,500 years. Our results indicate drier conditions during Heinrich Stadial 1 due to a southward shift of summer rainfall and a relatively weak Hadley Cell south of the Equator. We suggest that the Australian-Indonesian summer and winter monsoon variability were closely linked to summer insolation and abrupt climate changes in the northern hemisphere.This study was funded by the German Bundesministerium für Bildung und Forschung (PABESIA) and the Deutsche Forschungsgemeinschaft (DFG, HE 3412/15-1). DWO’s participation was funded by the U.S. National Science Foundation

    Metallic and complex hydride-based electrochemical storage of energy

    Get PDF
    The development of efficient storage systems is one of the keys to the success of the energy transition. There are many ways to store energy, but among them, electrochemical storage is particularly valuable because it can store electrons produced by renewable energies with a very good efficiency. However, the solutions currently available on the market remain unsuitable in terms of storage capacity, recharging kinetics, durability, and cost. Technological breakthroughs are therefore expected to meet the growing need for energy storage. Within the framework of the Hydrogen Technology Collaboration Program—H2TCP Task-40, IEA\u27s expert researchers have developed innovative materials based on hydrides (metallic or complex) offering new solutions in the field of solid electrolytes and anodes for alkaline and ionic batteries. This review presents the state of the art of research in this field, from the most fundamental aspects to the applications in battery prototypes
    • …
    corecore