29,233 research outputs found

    Fractal space frames and metamaterials for high mechanical efficiency

    Full text link
    A solid slender beam of length LL, made from a material of Young's modulus YY and subject to a gentle compressive force FF, requires a volume of material proportional to L3f1/2L^{3}f^{1/2} [where f≡F/(YL2)≪1f\equiv F/(YL^{2})\ll 1] in order to be stable against Euler buckling. By constructing a hierarchical space frame, we are able to systematically change the scaling of required material with ff so that it is proportional to L3f(G+1)/(G+2)L^{3}f^{(G+1)/(G+2)}, through changing the number of hierarchical levels GG present in the structure. Based on simple choices for the geometry of the space frames, we provide expressions specifying in detail the optimal structures (in this class) for different values of the loading parameter ff. These structures may then be used to create effective materials which are elastically isotropic and have the combination of low density and high crush strength. Such a material could be used to make light-weight components of arbitrary shape.Comment: 6 pages, 4 figure

    Empirical Study of Simulated Two-planet Microlensing Event

    Get PDF
    We undertake the first study of two-planet microlensing models recovered from simulations of microlensing events generated by realistic multi-planet systems in which 292 planetary events including 16 two-planet events were detected from 6690 simulated light curves. We find that when two planets are recovered, their parameters are usually close to those of the two planets in the system most responsible for the perturbations. However, in one of the 16 examples, the apparent mass of both detected planets was more than doubled by the unmodeled influence of a third, massive planet. This fraction is larger than, but statistically consistent with, the roughly 1.5% rate of serious mass errors due to unmodeled planetary companions for the 274 cases from the same simulation in which a single planet is recovered. We conjecture that an analogous effect due to unmodeled stellar companions may occur more frequently. For seven out of 23 cases in which two planets in the system would have been detected separately, only one planet was recovered because the perturbations due to the two planets had similar forms. This is a small fraction (7/274) of all recovered single-planet models, but almost a third of all events that might plausibly have led to two-planet models. Still, in these cases, the recovered planet tends to have parameters similar to one of the two real planets most responsible for the anomaly.Comment: 21 pages, 9 figures, 2 tables; submitted to ApJ; for a short video introducing the key results, see https://www.youtube.com/watch?v=qhK4a6sbfO

    Adaptive Electricity Scheduling in Microgrids

    Full text link
    Microgrid (MG) is a promising component for future smart grid (SG) deployment. The balance of supply and demand of electric energy is one of the most important requirements of MG management. In this paper, we present a novel framework for smart energy management based on the concept of quality-of-service in electricity (QoSE). Specifically, the resident electricity demand is classified into basic usage and quality usage. The basic usage is always guaranteed by the MG, while the quality usage is controlled based on the MG state. The microgrid control center (MGCC) aims to minimize the MG operation cost and maintain the outage probability of quality usage, i.e., QoSE, below a target value, by scheduling electricity among renewable energy resources, energy storage systems, and macrogrid. The problem is formulated as a constrained stochastic programming problem. The Lyapunov optimization technique is then applied to derive an adaptive electricity scheduling algorithm by introducing the QoSE virtual queues and energy storage virtual queues. The proposed algorithm is an online algorithm since it does not require any statistics and future knowledge of the electricity supply, demand and price processes. We derive several "hard" performance bounds for the proposed algorithm, and evaluate its performance with trace-driven simulations. The simulation results demonstrate the efficacy of the proposed electricity scheduling algorithm.Comment: 12 pages, extended technical repor

    Anomaly Detection for Science DMZs Using System Performance Data

    Get PDF
    Science DMZs are specialized networks that enable large-scale distributed scientific research, providing efficient and guaranteed performance while transferring large amounts of data at high rates. The high-speed performance of a Science DMZ is made viable via data transfer nodes (DTNs), therefore they are a critical point of failure. DTNs are usually monitored with network intrusion detection systems (NIDS). However, NIDS do not consider system performance data, such as network I/O interrupts and context switches, which can also be useful in revealing anomalous system performance potentially arising due to external network based attacks or insider attacks. In this paper, we demonstrate how system performance metrics can be applied towards securing a DTN in a Science DMZ network. Specifically, we evaluate the effectiveness of system performance data in detecting TCP-SYN flood attacks on a DTN using DBSCAN (a density-based clustering algorithm) for anomaly detection. Our results demonstrate that system interrupts and context switches can be used to successfully detect TCP-SYN floods, suggesting that system performance data could be effective in detecting a variety of attacks not easily detected through network monitoring alone
    • …
    corecore