27 research outputs found

    Bioreactor for microalgal cultivation systems: strategy and development

    Get PDF
    Microalgae are important natural resources that can provide food, medicine, energy and various bioproducts for nutraceutical, cosmeceutical and aquaculture industries. Their production rates are superior compared to those of terrestrial crops. However, microalgae biomass production on a large scale is still a challenging problem in terms of economic and ecological viability. Microalgal cultivation system should be designed to maximize production with the least cost. Energy efficient approaches of using light, dynamic mixing to maximize use of carbon dioxide (CO2) and nutrients and selection of highly productive species are the main considerations in designing an efficient photobioreactor. In general, optimized culture conditions and biological responses are the two overarching attributes to be considered for photobioreactor design strategies. Thus, fundamental aspects of microalgae growth, such as availability of suitable light, CO2 and nutrients to each growing cell, suitable environmental parameters (including temperature and pH) and efficient removal of oxygen which otherwise would negatively impact the algal growth, should be integrated into the photobioreactor design and function. Innovations should be strategized to fully exploit the wastewaters, flue-gas, waves or solar energy to drive large outdoor microalgae cultivation systems. Cultured species should be carefully selected to match the most suitable growth parameters in different reactor systems. Factors that would decrease production such as photoinhibition, self-shading and phosphate flocculation should be nullified using appropriate technical approaches such as flashing light innovation, selective light spectrum, light-CO2 synergy and mixing dynamics. Use of predictive mathematical modelling and adoption of new technologies in novel photobioreactor design will not only increase the photosynthetic and growth rates but will also enhance the quality of microalgae composition. Optimizing the use of natural resources and industrial wastes that would otherwise harm the environment should be given emphasis in strategizing the photobioreactor mass production. To date, more research and innovation are needed since scalability and economics of microalgae cultivation using photobioreactors remain the challenges to be overcome for large-scale microalgae production

    Screening of freshwater and seawater microalgae strains in fully controlled photobioreactors for biodiesel production

    No full text
    International audienceh i g h l i g h t s A screening procedure was developed to select an optimal strain for biodiesel production. TAG productivity and cell fragility, affecting TAG recovery in wet environment, were considered. 14 seawater and freshwater microalgae strains were screened. Large variation between the strains on numerous screening criteria was found. N. gaditana and P. kessleri were found to be the most promising strains for biodiesel production. a b s t r a c t Strain selection is one of the primary hurdles facing cost-effective microalgal biodiesel production. Indeed, the strain used affects both upstream and downstream biodiesel production processes. This study presents a screening procedure that considers the most significant criteria in microalgal biodiesel production including TAG production and wet extraction and recovery of TAGs. Fourteen freshwater and seawater strains were investigated. Large variation was observed between the strains in all the screening criteria. The overall screening procedure ultimately led to the identification of Parachlorella kessleri UTEX2229 and Nannochloropsis gaditana CCMP527 as the best freshwater and seawater strains, respectively. They featured the largest areal TAG productivity equal to 2.7 Â 10 À3 and 2.3 Â 10 À3 kg m À2 d À1 , respectively. These two strains also displayed encouraging cell fragility in a high pressure bead milling process with 69% and 98% cell disruption at 1750 bar making them remarkable strains for TAG extraction in wet environment
    corecore