5,947 research outputs found

    Relativistic Particle Acceleration in a Folded Current Sheet

    Full text link
    Two-dimensional particle simulations of a relativistic Harris current sheet of pair plasmashave demonstrated that the system is unstable to the relativistic drift kink instability (RDKI) and that a new kind of acceleration process takes place in the deformed current sheet. This process contributes to the generation of non-thermal particles and contributes to the fast magnetic dissipation in the current sheet structure. The acceleration mechanism and a brief comparison with relativistic magnetic reconnection are presented.Comment: 11 preprint pages, including 3 .eps figure

    Electronic Orders Induced by Kondo Effect in Non-Kramers f-Electron Systems

    Full text link
    This paper clarifies the microscopic nature of the staggered scalar order, which is specific to even number of f electrons per site. In such systems, crystalline electric field (CEF) can make a singlet ground state. As exchange interaction with conduction electrons increases, the CEF singlet at each site gives way to Kondo singlets. The collective Kondo singlets are identified with itinerant states that form energy bands. Near the boundary of itinerant and localized states, a new type of electronic order appears with staggered Kondo and CEF singlets. We present a phenomenological three-state model that qualitatively reproduces the characteristic phase diagram, which have been obtained numerically with use of the continuous-time quantum Monte Carlo combined with the dynamical mean-field theory. The scalar order observed in PrFe_4P_{12} is ascribed to this staggered order accompanying charge density wave (CDW) of conduction electrons. Accurate photoemission and tunneling spectroscopy should be able to probe sharp peaks below and above the Fermi level in the ordered phase.Comment: 7 pages, 8 figure

    Non-collinear magnetism in Al-Mn topologically disordered systems

    Full text link
    We have performed the first ab-initio calculations of a possible complex non-collinear magnetic structure in aluminium-rich Al-Mn liquids within the real-space tight-binding LMTO method. In our previous work we predicted the existence of large magnetic moments in Al-Mn liquids [A.M. Bratkovsky, A.V. Smirnov, D. N. Manh, and A. Pasturel, \prb {\bf 52}, 3056 (1995)] which has been very recently confirmed experimentally. Our present calculations show that there is a strong tendency for the moments on Mn to have a non-collinear (random) order retaining their large value of about 3~ÎĽB\mu_B. The d-electrons on Mn demonstrate a pronounced non-rigid band behaviour which cannot be reproduced within a simple Stoner picture. The origin of the magnetism in these systems is a topological disorder which drives the moments formation and frustrates their directions in the liquid phase.Comment: 10 pages, RevTex 3.0, 24kb. 3 PS figures available on request from [email protected] The work has been presented at ERC ``Electronic Structire of Solids'' (Lunteren, The Netherlands, 9-14 September 1995

    Pressure Field Visualization on the Surface of a Square Cylinder with Pressure Sensitive Paints

    Get PDF
    Pressure Sensitive Paints (PSP) are one of the breakthrough technologies for the measurement of aerodynamic sound from automobiles. Potential problems in applying Pressure Sensitive Paints to automobiles are low time resolution and less accuracy in the low-speed flow field. In this investigation, we attempted to improve the accuracy of PSP in a low-speed flow. A suction-type wind tunnel, which has a square test section of 75 mm by 150 mm, was developed to remove the influence of temperature differences during the wind tunnel experiments. A carefully selected array of ultraviolet LEDs was utilised as a lighting system to match the effective excitation wavelength of the developed PSP (390 nm). The surface pressure of a square cylinder was measured at velocity range from 35 m/s to 75 m/s with PSP and a conventional pressure sensor. The experimental data were compared with the results of conventional pressure measurements and numerical simulations. The experimental results showed that the accuracy of the PSP was about 10% at the velocities of 65 m/s or higher. The pressure profiles can be clearly observed at the uniform velocity of 75 m/s. Conversely, accuracy within the 35 m/s to 55 m/s velocity range was not high enough because of insufficient CCD camera resolution. Despite large error values, the colour depths of the luminescence image were almost identical for the same experimental conditions. This indicated that the calibration coefficients of the Stern-Volmer relation were almost constant during the experiments. It revealed that the suction-type wind tunnel is suitable for PSP measurements

    Flocculation of wall-deficient cells of \u3ci\u3eChlamydomonas reinhardtii\u3c/i\u3e mutant cw15 by calcium and methanol

    Get PDF
    Flocculation is a common and inexpensive method for harvesting algae from solution. After nitrogen starvation, it was shown that 83 + 3% of the wall-deficient cells of the cw 15 mutant of Chlamydomonas reinhardtii flocculated from 12 mL samples within 15 min after the addition of 15 mM calcium chloride at pH 8.4. Only 24 2% of the wildtype strain flocculated under these conditions, thus demonstrating how a simple mutation might facilitate process design. The data suggested that algae grown in waters with similar calcium concentrations (e.g. certain wastewaters) might be harvested through simple pH adjustment. It was also discovered that the addition of small amounts (\u3c5% v/v) of methanol could significantly reduce the calcium needed to achieve flocculation. Within 15 min after addition of 12 mM calcium chloride and 4.6% (v/v) methanol, 83 + 4% of cw15 cells flocculated. Methanol is fully recoverable by distillation, and its use might enable flocculation without further water salinization when media calcium concentrations fall short of 15 mM. It was further shown that substrates for and/or products of cellular growth affected flocculation adversely. Nearly 81% of cells flocculated from fresh medium compared to only 54% in spent medium

    Ultrafast switching of composite order in A3C60{A}_{3}{\mathrm{C}}_{60}

    Get PDF
    We study the controlled manipulation of the Jahn-Teller metal state of fulleride compounds using nonequilibrium dynamical mean-field theory. This anomalous metallic state is a spontaneous orbital-selective Mott phase, which is characterized by one metallic and two insulating orbitals. Using protocols based on transiently reduced hopping amplitudes or periodic electric fields, we demonstrate the possibility to switch orbitals between Mott insulating and metallic on a subpicosecond time scale, and to rotate the order parameter between three equivalent states that can be distinguished by their anisotropic conductance. The Jahn-Teller metal phase of alkali-doped fullerides thus provides a platform for ultrafast persistent memory devices

    Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas

    Full text link
    We study linear and nonlinear development of relativistic and ultrarelativistic current sheets of pair plasmas with antiparallel magnetic fields. Two types of two-dimensional problems are investigated by particle-in-cell simulations. First, we present the development of relativistic magnetic reconnection, whose outflow speed is an order of the light speed c. It is demonstrated that particles are strongly accelerated in and around the reconnection region, and that most of magnetic energy is converted into "nonthermal" part of plasma kinetic energy. Second, we present another two-dimensional problem of a current sheet in a cross-field plane. In this case, the relativistic drift kink instability (RDKI) occurs. Particle acceleration also takes place, but the RDKI fast dissipates the magnetic energy into plasma heat. We discuss the mechanism of particle acceleration and the theory of the RDKI in detail. It is important that properties of these two processes are similar in the relativistic regime of T > mc^2, as long as we consider the kinetics. Comparison of the two processes indicates that magnetic dissipation by the RDKI is more favorable process in the relativistic current sheet. Therefore the striped pulsar wind scenario should be reconsidered by the RDKI.Comment: To appear in ApJ vol. 670; 60 pages, 27 figures; References and typos are fixe
    • …
    corecore