1,104 research outputs found

    Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces

    Full text link
    This paper is devoted to the study of the Cauchy problem for the Boussinesq system with partial viscosity in dimension N3.N\geq3. First we prove a global existence result for data in Lorentz spaces satisfying a smallness condition which is at the scaling of the equations. Second, we get a uniqueness result in Besov spaces with {\it negative} indices of regularity (despite the fact that there is no smoothing effect on the temperature). The proof relies on a priori estimates with loss of regularity for the nonstationary Stokes system with convection. As a corollary, we obtain a global existence and uniqueness result for small data in Lorentz spaces.Comment: 24 pages. Physica D, in pres

    Global exponential stability of classical solutions to the hydrodynamic model for semiconductors

    Full text link
    In this paper, the global well-posedness and stability of classical solutions to the multidimensional hydrodynamic model for semiconductors on the framework of Besov space are considered. We weaken the regularity requirement of the initial data, and improve some known results in Sobolev space. The local existence of classical solutions to the Cauchy problem is obtained by the regularized means and compactness argument. Using the high- and low- frequency decomposition method, we prove the global exponential stability of classical solutions (close to equilibrium). Furthermore, it is also shown that the vorticity decays to zero exponentially in the 2D and 3D space. The main analytic tools are the Littlewood-Paley decomposition and Bony's para-product formula.Comment: 18 page

    Existence of global strong solutions in critical spaces for barotropic viscous fluids

    Get PDF
    This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N2N\geq2. We address the question of the global existence of strong solutions for initial data close from a constant state having critical Besov regularity. In a first time, this article show the recent results of \cite{CD} and \cite{CMZ} with a new proof. Our result relies on a new a priori estimate for the velocity, where we introduce a new structure to \textit{kill} the coupling between the density and the velocity as in \cite{H2}. We study so a new variable that we call effective velocity. In a second time we improve the results of \cite{CD} and \cite{CMZ} by adding some regularity on the initial data in particular ρ0\rho_{0} is in H1H^{1}. In this case we obtain global strong solutions for a class of large initial data on the density and the velocity which in particular improve the results of D. Hoff in \cite{5H4}. We conclude by generalizing these results for general viscosity coefficients

    On the global well-posedness of a class of Boussinesq- Navier-Stokes systems

    Full text link
    In this paper we consider the following 2D Boussinesq-Navier-Stokes systems \partial_{t}u+u\cdot\nabla u+\nabla p+ |D|^{\alpha}u &= \theta e_{2} \partial_{t}\theta+u\cdot\nabla \theta+ |D|^{\beta}\theta &=0 \quad with divu=0\textrm{div} u=0 and 0<β<α<10<\beta<\alpha<1. When 664<α<1\frac{6-\sqrt{6}}{4}<\alpha< 1, 1α<βf(α)1-\alpha<\beta\leq f(\alpha) , where f(α)f(\alpha) is an explicit function as a technical bound, we prove global well-posedness results for rough initial data.Comment: 23page

    On the global well-posedness for the Boussinesq system with horizontal dissipation

    Full text link
    In this paper, we investigate the Cauchy problem for the tridimensional Boussinesq equations with horizontal dissipation. Under the assumption that the initial data is an axisymmetric without swirl, we prove the global well-posedness for this system. In the absence of vertical dissipation, there is no smoothing effect on the vertical derivatives. To make up this shortcoming, we first establish a magic relationship between urr\frac{u^{r}}{r} and ωθr\frac{\omega_\theta}{r} by taking full advantage of the structure of the axisymmetric fluid without swirl and some tricks in harmonic analysis. This together with the structure of the coupling of \eqref{eq1.1} entails the desired regularity.Comment: 32page

    Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index s=1s=-1

    Full text link
    This paper is concerned with well-posedness of the Boussinesq system. We prove that the nn (n2n\ge2) dimensional Boussinesq system is well-psoed for small initial data (u0,θ0)(\vec{u}_0,\theta_0) (u0=0\nabla\cdot\vec{u}_0=0) either in (B,11B,1,1)×Bp,r1({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times{B}^{-1}_{p,r} or in B,1,1×Bp,1,ϵ{B^{-1,1}_{\infty,\infty}}\times{B}^{-1,\epsilon}_{p,\infty} if r[1,]r\in[1,\infty], ϵ>0\epsilon>0 and p(n2,)p\in(\frac{n}{2},\infty), where Bp,qs,ϵB^{s,\epsilon}_{p,q} (sRs\in\mathbb{R}, 1p,q1\leq p,q\leq\infty, ϵ>0\epsilon>0) is the logarithmically modified Besov space to the standard Besov space Bp,qsB^{s}_{p,q}. We also prove that this system is well-posed for small initial data in (B,11B,1,1)×(Bn2,11Bn2,1,1)({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times({B}^{-1}_{\frac{n}{2},1}\cap{B^{-1,1}_{\frac{n}{2},\infty}}).Comment: 18 page

    Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data

    Full text link
    The present paper is dedicated to the study of the global existence for the inviscid two-dimensional Boussinesq system. We focus on finite energy data with bounded vorticity and we find out that, under quite a natural additional assumption on the initial temperature, there exists a global unique solution. None smallness conditions are imposed on the data. The global existence issues for infinite energy initial velocity, and for the B\'enard system are also discussed.Comment: 12 page

    Controllability and observabiliy of an artificial advection-diffusion problem

    Full text link
    In this paper we study the controllability of an artificial advection-diffusion system through the boundary. Suitable Carleman estimates give us the observability on the adjoint system in the one dimensional case. We also study some basic properties of our problem such as backward uniqueness and we get an intuitive result on the control cost for vanishing viscosity.Comment: 20 pages, accepted for publication in MCSS. DOI: 10.1007/s00498-012-0076-

    The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity

    Full text link
    We are concerned with the so-called Boussinesq equations with partial viscosity. These equations consist of the ordinary incompressible Navier-Stokes equations with a forcing term which is transported {\it with no dissipation} by the velocity field. Such equations are simplified models for geophysics (in which case the forcing term is proportional either to the temperature, or to the salinity or to the density). In the present paper, we show that the standard theorems for incompressible Navier-Stokes equations may be extended to Boussinesq system despite the fact that there is no dissipation or decay at large time for the forcing term. More precisely, we state the global existence of finite energy weak solutions in any dimension, and global well-posedness in dimension N3N\geq3 for small data. In the two-dimensional case, the finite energy global solutions are shown to be unique for any data in L2(R2).L^2(\R^2).Comment: Bulletin de la Societe Mathematique de France, in pres

    On the Cauchy problem for a nonlinearly dispersive wave equation

    Full text link
    We establish the local well-posedness for a new nonlinearly dispersive wave equation and we show that the equation has solutions that exist for indefinite times as well as solutions which blowup in finite times. Furthermore, we derive an explosion criterion for the equation and we give a sharp estimate from below for the existence time of solutions with smooth initial data.Comment: arxiv version is already officia
    corecore