29,534 research outputs found

    Strange-Beauty Meson Production at ppˉp\bar p Colliders

    Full text link
    The production rates and transverse momentum distributions of the strange-beauty mesons BsB_s and BsB_s^* at ppˉp\bar p colliders are calculated assuming fragmentation is the dominant process. Results are given for the Tevatron in the large transverse momentum region, where fragmentation is expected to be most important.Comment: Minor changes in the discussion section. Also available at http://www.ph.utexas.edu/~cheung/paper.htm

    Higgs Descendants

    Get PDF
    We define a Higgs descendant χ\chi to be a particle beyond the standard model whose mass arises predominantly from the vacuum expectation value of the Higgs boson. Higgs descendants arise naturally from new physics whose intrinsic mass scale is unrelated to the electroweak scale. The coupling of χ\chi to the Higgs boson is fixed by the mass and spin of χ\chi, yielding a highly predictive setup in which there may be substantial modifications to the properties of the Higgs boson. For example, if the decay of the Higgs boson to χ\chi is kinematically allowed, then this branching ratio is largely determined. Depending on the stability of χ\chi, Higgs decays may result in a variety of possible visible or invisible final states. Alternatively, loops of χ\chi may affect Higgs boson production or its decays to standard model particles. If χ\chi is stable dark matter, then the mandatory coupling between χ\chi and the Higgs boson gives a lower bound on the direct detection cross section as a function of the χ\chi mass. We also present a number of explicit models which are examples of Higgs descendants. Finally, we comment on Higgs descendants in the context of the excesses near 125 GeV recently observed at ATLAS and CMS.Comment: 9 pages, 7 figures; version to appear in Phys. Rev. D; v3 typos correcte

    Long decoding runs for Galileo's convolutional codes

    Get PDF
    Decoding results are described for long decoding runs of Galileo's convolutional codes. A 1 k-bit/sec hardware Viterbi decoder is used for the (15, 1/4) convolutional code, and a software Viterbi decoder is used for the (7, 1/2) convolutional code. The output data of these long runs are stored in data files using a data compression format which can reduce file size by a factor of 100 to 1 typically. These data files can be used to replicate the long, time-consuming runs exactly and are useful to anyone who wants to analyze the burst statistics of the Viterbi decoders. The 1 k-bit/sec hardware Viterbi decoder was developed in order to demonstrate the correctness of certain algorithmic concepts for decoding Galileo's experimental (15, 1/4) code, and for the long-constraint-length codes in general. The hardware decoder can be used both to search for good codes and to measure accurately the performance of known codes
    corecore