226 research outputs found
Recommended from our members
Phase 2 trial of montelukast for prevention of pain in sickle cell disease.
Cysteinyl leukotrienes (CysLTs) are lipid mediators of inflammation. In patients with sickle cell disease (SCD), levels of CysLTs are increased compared with controls and associated with a higher rate of hospitalization for pain. We tested the hypothesis that administration of the CysLT receptor antagonist montelukast would improve SCD-related comorbidities, including pain, in adolescents and adults with SCD. In a phase 2 randomized trial, we administered montelukast or placebo for 8 weeks. The primary outcome measure was a >30% reduction in soluble vascular cell adhesion molecule 1 (sVCAM), a marker of vascular injury. Secondary outcome measures were reduction in daily pain, improvement in pulmonary function, and improvement in microvascular blood flow, as measured by laser Doppler velocimetry. Forty-two participants with SCD were randomized to receive montelukast or placebo for 8 weeks. We found no difference between the montelukast and placebo groups with regard to the levels of sVCAM, reported pain, pulmonary function, or microvascular blood flow. Although montelukast is an effective treatment for asthma, we did not find benefit for SCD-related outcomes. This clinical trial was registered at www.clinicaltrials.gov as #NCT01960413
Modification of supported lipid membranes by atomic force microscopy
The atomic force microscope (AFM) was used to structurally modify supported lipid bilayers in a controlled quantitative manner. By increasing the force applied by the AFM tip, lipid was removed from the scanned area, leaving a cut through the lipid bilayer. Cuts were repaired with the AFM by scanning the region with a controlled force and driving lipid back into the cut. A slow self-annealing of cuts was also observed
Simple approximation for the starting-energy-independent two-body effective interaction with applications to 6Li
We apply the Lee-Suzuki iteration method to calculate the linked-folded
diagram series for a new Nijmegen local NN potential. We obtain an exact
starting-energy-independent effective two-body interaction for a multi-shell,
no-core, harmonic-oscillator model space. It is found that the resulting
effective-interaction matrix elements can be well approximated by the Brueckner
G-matrix elements evaluated at starting energies selected in a simple way.
These starting energies are closely related to the energies of the initial
two-particle states in the ladder diagrams. The ``exact'' and approximate
effective interactions are used to calculate the energy spectrum of 6Li in
order to test the utility of the approximate form.Comment: 15 text pages and 2 PostScript figures (available upon request).
University of Arizona preprint, Number unassigne
Fermi Surface of The One-dimensional Kondo Lattice Model
We show a strong indication of the existence of a large Fermi surface in the
one-dimensional Kondo lattice model. The characteristic wave vector of the
model is found to be , being the density of the
conduction electrons. This result is at first obtained for a variant of the
model that includes an antiferromagnetic Heisenberg interaction between
the local moments. It is then directly observed in the conventional Kondo
lattice , in the narrow range of Kondo couplings where the long
distance properties of the model are numerically accessible.Comment: 11 pages, 6 figure
Density-Functional Theory of Quantum Freezing: Sensitivity to Liquid-State Structure and Statistics
Density-functional theory is applied to compute the ground-state energies of
quantum hard-sphere solids. The modified weighted-density approximation is used
to map both the Bose and the Fermi solid onto a corresponding uniform Bose
liquid, assuming negligible exchange for the Fermi solid. The required
liquid-state input data are obtained from a paired phonon analysis and the
Feynman approximation, connecting the static structure factor and the linear
response function. The Fermi liquid is treated by the Wu-Feenberg cluster
expansion, which approximately accounts for the effects of antisymmetry.
Liquid-solid transitions for both systems are obtained with no adjustment of
input data. Limited quantitative agreement with simulation indicates a need for
further improvement of the liquid-state input through practical alternatives to
the Feynman approximation.Comment: IOP-TeX, 21 pages + 7 figures, to appear, J. Phys.: Condens. Matte
Towards a Tetravalent Chemistry of Colloids
We propose coating spherical particles or droplets with anisotropic
nano-sized objects to allow micron-scale colloids to link or functionalize with
a four-fold valence, similar to the sp3 hybridized chemical bonds associated
with, e.g., carbon, silicon and germanium. Candidates for such coatings include
triblock copolymers, gemini lipids, metallic or semiconducting nanorods and
conventional liquid crystal compounds. We estimate the size of the relevant
nematic Frank constants, discuss how to obtain other valences and analyze the
thermal distortions of ground state configurations of defects on the sphere.Comment: Replaced to improve figures. 4 figures Nano Letter
A Quantum Monte Carlo Method and Its Applications to Multi-Orbital Hubbard Models
We present a framework of an auxiliary field quantum Monte Carlo (QMC) method
for multi-orbital Hubbard models. Our formulation can be applied to a
Hamiltonian which includes terms for on-site Coulomb interaction for both
intra- and inter-orbitals, intra-site exchange interaction and energy
differences between orbitals. Based on our framework, we point out possible
ways to investigate various phase transitions such as metal-insulator, magnetic
and orbital order-disorder transitions without the minus sign problem. As an
application, a two-band model is investigated by the projection QMC method and
the ground state properties of this model are presented.Comment: 10 pages LaTeX including 2 PS figures, to appear in J.Phys.Soc.Jp
Origin of G-type Antiferromagnetism and Orbital-Spin Structures in
The possibility of the distortion of octahedra is
examined theoretically in order to understand the origin of the G-type
antiferromagnetism (AFM(G)) and experimentally observed puzzling properties of
. By utilizing an effective spin and pseudospin Hamiltonian with
the strong Coulomb repulsion, it is shown that AFM(G) state is stabilized
through the lift of the -orbital degeneracy accompanied by a tiny
-distortion . The estimated spin-exchange interaction is in agreement
with that obtained by the neutron scattering. Moreover, the level-splitting
energy due to the distortion can be considerably larger than the spin-orbit
interaction even when the distortion becomes smaller than the detectable limit
under the available experimental resolution. This suggests that the orbital
momentum is fully quenched and the relativistic spin-orbit interaction is not
effective in this system, in agreement with recent neutron-scattering
experiment.Comment: 9 pages, 6 figure
Price and income policies
Discussion and objective debate is an important and necessary ingredient of social decision-making in a democracy. Only thus can the public, legislators, administrators and special interest groups inventory and understand the complete range of phenomena relevant for public decision. Discussion and analysis is a method of measurement, for a more complete inventory of goals and sub-goals of public policy and for expression of hypotheses and predictions in respect to outcomes of various policy means. Discussion is the most ancient and universal process for reasoned calculation in social policy, whether this be at the program committee of the 4-H Club or in presidential elections.https://lib.dr.iastate.edu/card_reports/1006/thumbnail.jp
Metal insulator transition in TlSr2CoO5 from orbital degeneracy and spin disproportionation
To describe the metal insulator transition in the new oxide TlSr2CoO5 we
investigate its electronic structure by LDA and model Hartree-Fock
calculations. Within LDA we find a homogeneous metallic and ferromagnetic
ground state, but when including the Coulomb interaction more explicitly within
the Hartree-Fock approximation, we find an insulating state of lower energy
with both spin and orbital order. We also interpret our results in terms of a
simple model.Comment: 8 pages, 9 figure
- …