392 research outputs found

    Exposure to chronic mild stress prevents kappa opioid-mediated reinstatement of cocaine and nicotine place preference

    Get PDF
    Stress increases the risk of drug abuse, causes relapse to drug seeking, and potentiates the rewarding properties of both nicotine and cocaine. Understanding the mechanisms by which stress regulates the rewarding properties of drugs of abuse provides valuable insight into potential treatments for drug abuse. Prior reports have demonstrated that stress causes dynorphin release, activating kappa opioid receptors (KOR) in monoamine circuits resulting in both potentiation and reinstatement of cocaine and nicotine conditioned place preference. Here we report that kappa opioid-dependent reinstatement of cocaine and nicotine place preference is reduced when the mice are exposed to a randomized chronic mild stress (CMS) regime prior to training in a conditioned place preference-reinstatement paradigm. The CMS schedule involves seven different stressors (removal of nesting for 24 h, 5 min forced swim stress at 15°C, 8 h food and water deprivation, damp bedding overnight, white noise, cage tilt, and disrupted home cage lighting) rotated over a 3-week period. This response is KOR-selective, as CMS does not protect against cocaine or nicotine drug-primed reinstatement. This protection from reinstatement is also observed following sub-chronic social defeat stress, where each mouse is placed in an aggressor mouse home cage for a period of 20 min over 5 days. In contrast, a single acute stressor resulted in a potentiation of KOR-induced reinstatement, as previously reported. Prior studies have shown that stress alters sensitivity to opioids and prior stress can influence the pharmacodynamics of the opioid receptor system. Together, these findings suggest that exposure to different forms of stress may cause a dysregulation of kappa opioid circuitry and that changes resulting from mild stress can have protective and adaptive effects against drug relapse

    In vitro bond strengths post thermal and fatigue load cycling of sapphire brackets bonded with self-etch primer and evaluation of enamel damage

    Get PDF
    This in vitro study compares a self-etch primer (SEP) to an etch-and-rinse (EaR) for bonding sapphire brackets by evaluation of the enamel etch-pattern, shear bond strength, amount of remnant adhesive and enamel surface damage following thermal and fatigue cyclic loading. Ceramic (sapphire) brackets were bonded to 80 extracted human premolars using two enamel etching protocols: conventional EaR using 37% phosphoric acid (PA) gel (control), and a SEP (Transbond Plus). Each group was subdivided into two subgroups (n=20 teeth) according to the time of bracket debonding: after 24 h water storage or following 5000 thermo-cycles plus 5000 cycles fatigue loading, to determine the shear bond strength (SBS), adhesive remnant index (ARI score), with scanning electron microscopy (SEM) evaluation of enamel condition. The control subgroups consistently exhibited significantly higher (p<0.05) SBS mean values (23.4-29.8 MPa) than the SEP subgroups (15.1-22.4 MPa) at both bracket debonding time points. However, the SEP subgroups yielded milder etch-patterns and attained SBS values above the minimum requirement range for clinical performance. In addition, the higher SBS of control subgroups was accompanied with higher ARI scores and enamel damage grades than SEP subgroups as confirmed by SEM. Thermocycling and fatigue significantly reduced the SBS of all subgroups, with a non-significant drop in the amount of adhesive residue or enamel damage. The use of SEP can be a suitable alternative to the conventional PA gel for sapphire bracket bonding as it maintains suitable bond strength and has the potential to produce both less remnant adhesive and enamel damage

    Resistance of bonded premolars to four artificial ageing models post enamel conditioning with a novel calcium-phosphate paste

    Get PDF
    Background: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phospho-ric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. Material and Methods: Metal and ceramic brackets were bonded to 240 extracted human premolars using two ena-mel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from ?-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exposed to four artificial ageing models to examine the shear bond strength (SBS), adhesive rem-nant index (ARI score), with stereomicroscopic evaluation of enamel damage. Results: Metal and ceramic control subgroups yielded significantly higher (p ? 0.05) SBS (17.1-31.8 MPa) than the CaP subgroups (11.4-23.8 MPa) post all artificial ageing protocols, coupled with higher ARI scores and evidence of enamel damage. In contrast, the CaP subgroups survived all artificial ageing tests by maintaining adequate SBS for clinical performance, with the advantages of leaving unblemished enamel surface and bracket failures at the enamel-adhesive interface. Conclusions: Enamel conditioning with acidic CaP pastes attained adequate bond strengths with no or minimal adhesive residue and enamel damage, suggesting a suitable alternative to the conventional PA gel for orthodontic bonding

    Diet-induced gene expression of isolated pancreatic islets from a polygenic mouse model of the metabolic syndrome

    Get PDF
    AIMS/HYPOTHESIS: Numerous new genes have recently been identified in genome-wide association studies for type 2 diabetes. Most are highly expressed in beta cells and presumably play important roles in their function. However, these genes account for only a small proportion of total risk and there are likely to be additional candidate genes not detected by current methodology. We therefore investigated islets from the polygenic New Zealand mouse (NZL) model of diet-induced beta cell dysfunction to identify novel genes and pathways that may play a role in the pathogenesis of diabetes. METHODS: NZL mice were fed a diabetogenic high-fat diet (HF) or a diabetes-protective carbohydrate-free HF diet (CHF). Pancreatic islets were isolated by laser capture microdissection (LCM) and subjected to genome-wide transcriptome analyses. RESULTS: In the prediabetic state, 2,109 islet transcripts were differentially regulated (>1.5-fold) between HF and CHF diets. Of the genes identified, 39 (e.g. Cacna1d, Chd2, Clip2, Igf2bp2, Dach1, Tspan8) correlated with data from the Diabetes Genetics Initiative and Wellcome Trust Case Control Consortium genome-wide scans for type 2 diabetes, thus validating our approach. HF diet induced early changes in gene expression associated with increased cell-cycle progression, proliferation and differentiation of islet cells, and oxidative stress (e.g. Cdkn1b, Tmem27, Pax6, Cat, Prdx4 and Txnip). In addition, pathway analysis identified oxidative phosphorylation as the predominant gene-set that was significantly upregulated in response to the diabetogenic HF diet. CONCLUSIONS/INTERPRETATION: We demonstrated that LCM of pancreatic islet cells in combination with transcriptional profiling can be successfully used to identify novel candidate genes for diabetes. Our data strongly implicate glucose-induced oxidative stress in disease progression

    Alternative exon splicing and differential expression in pancreatic islets reveals candidate genes and pathways implicated in early diabetes development

    Get PDF
    Type 2 diabetes (T2D) has a strong genetic component. Most of the gene variants driving the pathogenesis of T2D seem to target pancreatic β-cell function. To identify novel gene variants acting at early stage of the disease, we analyzed whole transcriptome data to identify differential expression (DE) and alternative exon splicing (AS) transcripts in pancreatic islets collected from two metabolically diverse mouse strains at 6 weeks of age after three weeks of high-fat-diet intervention. Our analysis revealed 1218 DE and 436 AS genes in islets from NZO/Hl vs C3HeB/FeJ. Whereas some of the revealed genes present well-established markers for β-cell failure, such as Cd36 or Aldh1a3, we identified numerous DE/AS genes that have not been described in context with β-cell function before. The gene Lgals2, previously associated with human T2D development, was DE as well as AS and localizes in a quantitative trait locus (QTL) for blood glucose on Chr.15 that we reported recently in our N2(NZOxC3H) population. In addition, pathway enrichment analysis of DE and AS genes showed an overlap of only half of the revealed pathways, indicating that DE and AS in large parts influence different pathways in T2D development. PPARG and adipogenesis pathways, two well-established metabolic pathways, were overrepresented for both DE and AS genes, probably as an adaptive mechanism to cope for increased cellular stress. Our results provide guidance for the identification of novel T2D candidate genes and demonstrate the presence of numerous AS transcripts possibly involved in islet function and maintenance of glucose homeostasis

    Hippocampal long-term potentiation is disrupted during expression and extinction but is restored after reinstatement of morphine place preference

    Get PDF
    Learned associations between environmental cues and morphine use play an important role in the maintenance and/or relapse of opioid addiction. Although previous studies suggest that context-dependent morphine treatment alters glutamatergic transmission and synaptic plasticity in the hippocampus, their role in morphine conditioned place preference (CPP) and reinstatement remains unknown. We investigated changes in synaptic plasticity and NMDAR expression in the hippocampus after the expression, extinction, and reinstatement of morphine CPP. Here we report that morphine CPP is associated with increased basal synaptic transmission, impaired hippocampal long-term potentiation (LTP), and increased synaptic expression of the NR1 and NR2b NMDAR subunits. Changes in synaptic plasticity, synaptic NR1 and NR2b expression, and morphine CPP were absent when morphine was not paired with a specific context. Furthermore, hippocampal LTP was impaired and synaptic NR2b expression was increased after extinction of morphine CPP, indicating that these alterations in plasticity may be involved in the mechanisms underlying the learning of drug–environment associations. After extinction of morphine CPP, a priming dose of morphine was sufficient to reinstate morphine CPP and was associated with LTP that was indistinguishable from saline control groups. In contrast, morphine CPP extinguished mice that received a saline priming dose did not show CPP and had disrupted hippocampal LTP. Finally, we found that reinstatement of morphine CPP was prevented by the selective blockade of the NR2b subunit in the hippocampus. Together, these data suggest that alterations in synaptic plasticity and glutamatergic transmission play an important role in the reinstatement of morphine CPP

    In vitro pharmacology of fentanyl analogs at the human mu opioid receptor and their spectroscopic analysis

    Full text link
    Opioids are widely misused and account for almost half of overdose deaths in the United States. The cost in terms of lives, health care, and lost productivity is significant and has been declared a national crisis. Fentanyl is a highly potent mu opioid receptor (MOR) agonist and plays a significant role in the current opioid epidemic; fentanyl and its analogs (fentalogs) are increasingly becoming one of the biggest dangers in the opioid crisis. The availability of fentalogs in the illicit market is thought to play a significant role in the recent increase in opioid‐related deaths. Although there is both rodent homolog in vivo and in vitro data for some fentalogs, prior to this publication very little was known about the pharmacology of many of these illicit compounds at the human MOR (hMOR). Using gas chromatography–mass spectrometry, nuclear magnetic resonance spectroscopy, and in vitro assays, this study describes the spectral and pharmacological properties of 34 fentalogs. The reported spectra and chemical data will allow for easy identification of novel fentalogs in unknown or mixed samples. Taken together these data are useful for law enforcement and clinical workers as they will aid in the identification of fentalogs in unknown samples and can potentially be used to predict physiological effects after exposure.This study reports the basic in vitro pharmacology (affinity, agonist activity, and potencies) of 34 fentanyl analogs at the human mu opioid receptor. In addition, these fentalogs are analyzed spectroscopically using gas chromatography–mass spectrometry and proton nuclear magnetic resonance spectroscopy, to understand structural commonalities and key differences for identification.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156439/2/dta2822.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156439/1/dta2822_am.pd

    Optodynamic simulation of β-adrenergic receptor signalling

    Get PDF
    Optogenetics has provided a revolutionary approach to dissecting biological phenomena. However, the generation and use of optically active GPCRs in these contexts is limited and it is unclear how well an opsin-chimera GPCR might mimic endogenous receptor activity. Here we show that a chimeric rhodopsin/β(2) adrenergic receptor (opto-β(2)AR) is similar in dynamics to endogenous β(2)AR in terms of: cAMP generation, MAP kinase activation and receptor internalization. In addition, we develop and characterize a novel toolset of optically active, functionally selective GPCRs that can bias intracellular signalling cascades towards either G-protein or arrestin-mediated cAMP and MAP kinase pathways. Finally, we show how photoactivation of opto-β(2)AR in vivo modulates neuronal activity and induces anxiety-like behavioural states in both fiber-tethered and wireless, freely moving animals when expressed in brain regions known to contain β(2)ARs. These new GPCR approaches enhance the utility of optogenetics and allow for discrete spatiotemporal control of GPCR signalling in vitro and in vivo
    • …
    corecore