16,677 research outputs found
Relearning Professionalism: From High School Teacher to University Professor
In this narrative response to stories from the field, the author chronicles her transition from high school teacher to university professor. The transition was marked by a dissonance about what it means to be a professional in each setting. The author shares several lessons learned about the autonomy in higher education, which was at first daunting, and later a relief in her new environment
Growth of generating sets for direct powers of classical algebraic structures
For an algebraic structure A denote by d(A) the smallest size of a generating set for A, and let d(A)=(d(A),d(A2),d(A3),…), where An denotes a direct power of A. In this paper we investigate the asymptotic behaviour of the sequence d(A) when A is one of the classical structures—a group, ring, module, algebra or Lie algebra. We show that if A is finite then d(A) grows either linearly or logarithmically. In the infinite case constant growth becomes another possibility; in particular, if A is an infinite simple structure belonging to one of the above classes then d(A) is eventually constant. Where appropriate we frame our exposition within the general theory of congruence permutable varieties.Publisher PDFPeer reviewe
Tensors, !-graphs, and non-commutative quantum structures
Categorical quantum mechanics (CQM) and the theory of quantum groups rely
heavily on the use of structures that have both an algebraic and co-algebraic
component, making them well-suited for manipulation using diagrammatic
techniques. Diagrams allow us to easily form complex compositions of
(co)algebraic structures, and prove their equality via graph rewriting. One of
the biggest challenges in going beyond simple rewriting-based proofs is
designing a graphical language that is expressive enough to prove interesting
properties (e.g. normal form results) about not just single diagrams, but
entire families of diagrams. One candidate is the language of !-graphs, which
consist of graphs with certain subgraphs marked with boxes (called !-boxes)
that can be repeated any number of times. New !-graph equations can then be
proved using a powerful technique called !-box induction. However, previously
this technique only applied to commutative (or cocommutative) algebraic
structures, severely limiting its applications in some parts of CQM and
(especially) quantum groups. In this paper, we fix this shortcoming by offering
a new semantics for non-commutative !-graphs using an enriched version of
Penrose's abstract tensor notation.Comment: In Proceedings QPL 2014, arXiv:1412.810
A first-order logic for string diagrams
Equational reasoning with string diagrams provides an intuitive means of
proving equations between morphisms in a symmetric monoidal category. This can
be extended to proofs of infinite families of equations using a simple
graphical syntax called !-box notation. While this does greatly increase the
proving power of string diagrams, previous attempts to go beyond equational
reasoning have been largely ad hoc, owing to the lack of a suitable logical
framework for diagrammatic proofs involving !-boxes. In this paper, we extend
equational reasoning with !-boxes to a fully-fledged first order logic called
with conjunction, implication, and universal quantification over !-boxes. This
logic, called !L, is then rich enough to properly formalise an induction
principle for !-boxes. We then build a standard model for !L and give an
example proof of a theorem for non-commutative bialgebras using !L, which is
unobtainable by equational reasoning alone.Comment: 15 pages + appendi
- …
