61 research outputs found

    Recursive Partitioning Analysis of Fractional Low-Frequency Fluctuations in Narcolepsy With Cataplexy

    Get PDF
    Objective: To identify narcolepsy related regional brain activity alterations compared with matched healthy controls. To determine whether these changes can be used to distinguish narcolepsy from healthy controls by recursive partitioning analysis (RPA) and receiver operating characteristic (ROC) curve analysis.Method: Fifty-one narcolepsy with cataplexy patients (26 adults and 25 juveniles) and sixty matched heathy controls (30 adults and 30 juveniles) were recruited. All subjects underwent a resting-state functional magnetic resonance imaging scan. Fractional low-frequency fluctuations (fALFF) was used to investigate narcolepsy induced regional brain activity alterations among adult and juveniles, respectively. Recursive partitioning analysis and Receiver operating curve analysis was used to seek the ability of fALFF values within brain regions in distinguishing narcolepsy from healthy controls.Results: Compared with healthy controls, both adult and juvenile narcolepsy had lower fALFF values in bilateral medial superior frontal gyrus, bilateral inferior parietal lobule and supra-marginal gyrus. Compared with healthy controls, both adult and juvenile narcolepsy had higher fALFF values in bilateral sensorimotor cortex and middle temporal gyrus. Also juvenile narcolepsy had higher fALFF in right putamen and right thalamus compared with healthy controls. Based on RPA and ROC curve analysis, in adult participants, fALFF differences in right medial superior frontal gyrus can discriminate narcolepsy from healthy controls with high degree of sensitivity (100%) and specificity (88.9%). In juvenile participants, fALFF differences in left superior frontal gyrus can discriminate narcolepsy from healthy controls with moderate degree of sensitivity (57.1%) and specificity (88.9%).Conclusion: Compared with healthy controls, both the adult and juvenile narcolepsy showed overlap brain regions in fALFF differences after case-control comparison. Furthermore, we propose that fALFF value can be a helpful imaging biomarker in distinguishing narcolepsy from healthy controls among both adults and juveniles

    Altered Regional and Circuit Resting-State Activity Associated with Unilateral Hearing Loss

    Full text link
    The deprivation of sensory input after hearing damage results in functional reorganization of the brain including cross-modal plasticity in the sensory cortex and changes in cognitive processing. However, it remains unclear whether partial deprivation from unilateral auditory loss (UHL) would similarly affect the neural circuitry of cognitive processes in addition to the functional organization of sensory cortex. Here, we used resting-state functional magnetic resonance imaging to investigate intrinsic activity in 34 participants with UHL from acoustic neuroma in comparison with 22 matched normal controls. In sensory regions, we found decreased regional homogeneity (ReHo) in the bilateral calcarine cortices in UHL. However, there was an increase of ReHo in the right anterior insular cortex (rAI), the key node of cognitive control network (CCN) and multimodal sensory integration, as well as in the left parahippocampal cortex (lPHC), a key node in the default mode network (DMN). Moreover, seed-based resting–state functional connectivity analysis showed an enhanced relationship between rAI and several key regions of the DMN. Meanwhile, lPHC showed more negative relationship with components in the CCN and greater positive relationship in the DMN. Such reorganizations of functional connectivity within the DMN and between the DMN and CCN were confirmed by a graph theory analysis. These results suggest that unilateral sensory input damage not only alters the activity of the sensory areas but also reshapes the regional and circuit functional organization of the cognitive control network

    EEG-Meta-Microstates: Towards a More Objective Use of Resting-State EEG Microstate Findings Across Studies.

    Get PDF
    Over the last decade, EEG resting-state microstate analysis has evolved from a niche existence to a widely used and well-accepted methodology. The rapidly increasing body of empirical findings started to yield overarching patterns of associations of biological and psychological states and traits with specific microstate classes. However, currently, this cross-referencing among apparently similar microstate classes of different studies is typically done by "eyeballing" of printed template maps by the individual authors, lacking a systematic procedure. To improve the reliability and validity of future findings, we present a tool to systematically collect the actual data of template maps from as many published studies as possible and present them in their entirety as a matrix of spatial similarity. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps from ongoing or published studies. The tool also allows importing novel template maps and systematically extracting the findings associated with specific microstate maps in the literature. The analysis of 40 included sets of template maps indicated that: (i) there is a high degree of similarity of template maps across studies, (ii) similar template maps were associated with converging empirical findings, and (iii) representative meta-microstates can be extracted from the individual studies. We hope that this tool will be useful in coming to a more comprehensive, objective, and overarching representation of microstate findings

    Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load

    Get PDF
    BACKGROUND: Recent functional MRI (fMRI) studies have demonstrated that there is an intrinsically organized default mode network (DMN) in the resting brain, primarily made up of the posterior cingulate cortex (PCC) and the medial prefrontal cortex (MPFC). Several previous studies have found that the DMN is minimally disturbed during different resting-state conditions with limited cognitive demand. However, this conclusion was drawn from the visual inspection of the functional connectivity patterns within the DMN and no statistical comparison was performed. METHODOLOGY/PRINCIPAL FINDINGS: Four resting-state fMRI sessions were acquired: 1) eyes-closed (EC) (used to generate the DMN mask); 2) EC; 3) eyes-open with no fixation (EO); and 4) eyes-open with a fixation (EO-F). The 2-4 sessions were counterbalanced across participants (n = 20, 10 males). We examined the statistical differences in both functional connectivity and regional amplitude of low frequency fluctuation (ALFF) within the DMN among the 2-4 resting-state conditions (i.e., EC, EO, and EO-F). Although the connectivity patterns of the DMN were visually similar across these three different conditions, we observed significantly higher functional connectivity and ALFF in both the EO and the EO-F conditions as compared to the EC condition. In addition, the first and second resting EC conditions showed significant differences within the DMN, suggesting an order effect on the DMN activity. CONCLUSIONS/SIGNIFICANCE: Our findings of the higher DMN connectivity and regional spontaneous activities in the resting state with the eyes open suggest that the participants might have more non-specific or non-goal-directed visual information gathering and evaluation, and mind wandering or daydreaming during the resting state with the eyes open as compared to that with the eyes closed, thus providing insights into the understanding of unconstrained mental activity within the DMN. Our results also suggest that it should be cautious when choosing the type of a resting condition and designating the order of the resting condition in multiple scanning sessions in experimental design

    5-HTTLPR Polymorphism Impacts Task-Evoked and Resting-State Activities of the Amygdala in Han Chinese

    Get PDF
    Background: Prior research has shown that the amygdala of carriers of the short allele (s) of the serotonin transporter (5-HTT) gene (5-HTTLPR) have a larger response to negative emotional stimuli and higher spontaneous activity during the resting state than non-carriers. However, recent studies have suggested that the effects of 5-HTTLPR may be specific to different ethnic groups. Few studies have been conducted to address this issue. Methodology/Principal Findings: Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) was conducted on thirty-eight healthy Han Chinese subjects (l/l group, n = 19; s/s group, n = 19) during the resting state and during an emotional processing task. Compared with the s/s group, the l/l group showed significantly increased regional homogeneity or local synchronization in the right amygdala during the resting state (|t|.2.028, p,0.05, corrected), but no significant difference was found in the bilateral amygdala in response to negative stimuli in the emotional processing task. Conclusions/Significance: 5-HTTLPR can alter the spontaneous activity of the amygdala in Han Chinese. However, the effect of 5-HTTLPR on the amygdala both in task state and resting state in Asian population was no similar with Caucasians. The

    Threat-Oriented Collaborative Path Planning of Unmanned Reconnaissance Mission for the Target Group

    No full text
    Unmanned aerial vehicle (UAV) cluster combat is a typical example of an intelligent cluster application, and it is characterized by its large scale, low cost, retrievability, and intra-cluster autonomous coordination. An unmanned reconnaissance mission for a target group (URMFTG) is a significant pattern in UAV cluster combat. This paper discusses the collaborative path planning problem of unmanned aerial vehicle formations (UAVFs) and refueling tankers in a URMFTG with threat areas and fuel constraints. The purpose of collaborative path planning is to ensure that the UAVFs (with fuel constraints) can complete the reconnaissance mission for the target group with the assistance of refueling tankers, which is one of the most important constraints in the collaborative path planning. In this paper, a collaborative path-planning model is designed to analyze the relationship between the planning path of the UAVFs and the tankers, and a threat avoidance strategy is designed considering the threat area. This paper proposes a two-stage solution algorithm. It creates a UAVFs path-planning algorithm based on the fast search genetic algorithm (FSGA) and a refueling tanker path-planning algorithm based on the improved non-dominated sorting genetic algorithm II (NSGA-II). Based on simulation experiments, the solution method proposed in this paper can provide a better path-planning scheme for a URMFTG. That is, it decreases the rate of the UAVF’s distance growth from 3.1% to 2.2% for the path planning of UAVFs and provides a better Pareto solution set for the path planning of refueling tankers

    Threat-Oriented Collaborative Path Planning of Unmanned Reconnaissance Mission for the Target Group

    No full text
    Unmanned aerial vehicle (UAV) cluster combat is a typical example of an intelligent cluster application, and it is characterized by its large scale, low cost, retrievability, and intra-cluster autonomous coordination. An unmanned reconnaissance mission for a target group (URMFTG) is a significant pattern in UAV cluster combat. This paper discusses the collaborative path planning problem of unmanned aerial vehicle formations (UAVFs) and refueling tankers in a URMFTG with threat areas and fuel constraints. The purpose of collaborative path planning is to ensure that the UAVFs (with fuel constraints) can complete the reconnaissance mission for the target group with the assistance of refueling tankers, which is one of the most important constraints in the collaborative path planning. In this paper, a collaborative path-planning model is designed to analyze the relationship between the planning path of the UAVFs and the tankers, and a threat avoidance strategy is designed considering the threat area. This paper proposes a two-stage solution algorithm. It creates a UAVFs path-planning algorithm based on the fast search genetic algorithm (FSGA) and a refueling tanker path-planning algorithm based on the improved non-dominated sorting genetic algorithm II (NSGA-II). Based on simulation experiments, the solution method proposed in this paper can provide a better path-planning scheme for a URMFTG. That is, it decreases the rate of the UAVF’s distance growth from 3.1% to 2.2% for the path planning of UAVFs and provides a better Pareto solution set for the path planning of refueling tankers
    • …
    corecore