22,885 research outputs found

    SS Ari: a shallow-contact close binary system

    Full text link
    Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25q=3.25 and a degree of contact factor f=9.4(\pm0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair results in a massive third body with M3=1.73MM_3=1.73M_{\odot} and P_3=87.0yr.Onthecontrary,assumingcontinuousperiodchangesoftheeclipsingpairtheorbitalperiodoftertiaryis37.75yranditsmassisaboutyr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75yr and its mass is about 0.278M_{\odot}$. Both of the cases suggest the presence of an unseen third component in the system.Comment: 28 pages, 9 figures and 5 table

    Long-term monitoring of Molonglo calibrators

    Full text link
    Before and after every 12 hour synthesis observation, the Molonglo Observatory Synthesis Telescope (MOST) measures the flux densities of ~5 compact extragalactic radio sources, chosen from a list of 55 calibrators. From 1984 to 1996, the MOST made some 58 000 such measurements. We have developed an algorithm to process this dataset to produce a light curve for each source spanning this thirteen year period. We find that 18 of the 55 calibrators are variable, on time scales between one and ten years. There is the tendency for sources closer to the Galactic Plane to be more likely to vary, which suggests that the variability is a result of refractive scintillation in the Galactic interstellar medium. The sources with the flattest radio spectra show the highest levels of variability, an effect possibly resulting from differing orientations of the radio axes to the line of sight.Comment: 18 pages, 9 embedded EPS files. To appear in Publications of the Astronomical Society of Australia. Data available electronically at http://www.physics.usyd.edu.au/astrop/scan

    Pattern formation in oscillatory complex networks consisting of excitable nodes

    Full text link
    Oscillatory dynamics of complex networks has recently attracted great attention. In this paper we study pattern formation in oscillatory complex networks consisting of excitable nodes. We find that there exist a few center nodes and small skeletons for most oscillations. Complicated and seemingly random oscillatory patterns can be viewed as well-organized target waves propagating from center nodes along the shortest paths, and the shortest loops passing through both the center nodes and their driver nodes play the role of oscillation sources. Analyzing simple skeletons we are able to understand and predict various essential properties of the oscillations and effectively modulate the oscillations. These methods and results will give insights into pattern formation in complex networks, and provide suggestive ideas for studying and controlling oscillations in neural networks.Comment: 15 pages, 7 figures, to appear in Phys. Rev.

    A unified approach for the solution of the Fokker-Planck equation

    Full text link
    This paper explores the use of a discrete singular convolution algorithm as a unified approach for numerical integration of the Fokker-Planck equation. The unified features of the discrete singular convolution algorithm are discussed. It is demonstrated that different implementations of the present algorithm, such as global, local, Galerkin, collocation, and finite difference, can be deduced from a single starting point. Three benchmark stochastic systems, the repulsive Wong process, the Black-Scholes equation and a genuine nonlinear model, are employed to illustrate the robustness and to test accuracy of the present approach for the solution of the Fokker-Planck equation via a time-dependent method. An additional example, the incompressible Euler equation, is used to further validate the present approach for more difficult problems. Numerical results indicate that the present unified approach is robust and accurate for solving the Fokker-Planck equation.Comment: 19 page

    Stochastic Physics, Complex Systems and Biology

    Full text link
    In complex systems, the interplay between nonlinear and stochastic dynamics, e.g., J. Monod's necessity and chance, gives rise to an evolutionary process in Darwinian sense, in terms of discrete jumps among attractors, with punctuated equilibrium, spontaneous random "mutations" and "adaptations". On an evlutionary time scale it produces sustainable diversity among individuals in a homogeneous population rather than convergence as usually predicted by a deterministic dynamics. The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Phenotypic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a perspective.Comment: 10 page

    Localization Transition in a Ballistic Quantum Wire

    Full text link
    The many-body wave-function of an interacting one-dimensional electron system is probed, focusing on the low-density, strong interaction regime. The properties of the wave-function are determined using tunneling between two long, clean, parallel quantum wires in a GaAs/AlGaAs heterostructure, allowing for gate-controlled electron density. As electron density is lowered to a critical value the many-body state abruptly changes from an extended state with a well-defined momentum to a localized state with a wide range of momentum components. The signature of the localized states appears as discrete tunneling features at resonant gate-voltages, corresponding to the depletion of single electrons and showing Coulomb-blockade behavior. Typically 5-10 such features appear, where the one-electron state has a single-lobed momentum distribution, and the few-electron states have double-lobed distributions with peaks at ±kF\pm k_F. A theoretical model suggests that for a small number of particles (N<6), the observed state is a mixture of ground and thermally excited spin states.Comment: 10 pages, 4 figures, 1 tabl
    corecore