63 research outputs found

    Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics

    Get PDF
    Molecular dynamics simulations using tight-binding many body potential are carried out to study the roller imprint process of a gold single crystal. The effect of the roller tooth’s taper angle, imprint depth, imprint temperature, and imprint direction on the imprint force, adhesion, stress distribution, and strain are investigated. A two-stage roller imprint process was obtained from an imprint force curve. The two-stage imprint process included the imprint forming with a rapid increase of imprint force and the unloading stage combined with the adhesion stage. The results show that the imprint force and adhesion rapidly increase with decreasing taper angle and increasing imprint depth. The magnitude of the maximum imprint force and the time at which this maximum occurs are proportional to the imprint depth, but independent of the taper angle. In a comparison of the imprint mechanisms with a vertical imprint case, while high stress and strain regions are concentrated below the mold for vertical imprint, they also occur around the mold in the case of roller imprint. The regions were only concentrated on the substrate atoms underneath the mold in vertical imprint. Plastic flow increased with increasing imprint temperature

    High-Resolution Electron Microscopy of Semiconductor Heterostructures and Nanostructures

    Get PDF
    This chapter briefly describes the fundamentals of high-resolution electron microscopy techniques. In particular, the Peak Pairs approach for strain mapping with atomic column resolution, and a quantitative procedure to extract atomic column compositional information from Z-contrast high-resolution images are presented. It also reviews the structural, compositional, and strain results obtained by conventional and advanced transmission electron microscopy methods on a number of III–V semiconductor nanostructures and heterostructures

    Cyclosporine A-nanoparticles enhance the therapeutic benefit of adipose tissue- derived stem cell transplantation in a swine myocardial infarction model

    No full text
    Qiaoxiang Yin,1 Zhiyong Pei,2 Heng Wang,3 Yusheng Zhao4 1Department of Geriatric Cardiology, Chinese General Hospital of the Air Force, 2Department of Geriatric Cardiology, Beijing Military General Hospital, 3Department of Neurology, Chinese General Hospital of the Air Force, 4Institute of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, People’s Republic of China Abstract: Treatment of myocardial infarction (MI) with adipose-derived stem cells (ASCs) has produced promising results. Cyclosporine A (CsA) inhibits apoptosis by preventing the opening of mitochondrial permeability transition pores. A CsA nanoparticle emulsion (CsA-NP) has lower toxicity and higher efficiency as compared to CsA. In this study, we hypothesized that a combination of ASCs and CsA-NP would enhance the therapeutic efficiency in a swine MI model. MI was induced in pig hearts by occlusion of the left anterior descending artery. The animals that survived MI were divided into four groups and 1 week later received intracoronary ASCs (ASCs, n=6), intracoronary culture media in combination with CsA-NP (CsA-NP, n=6), intracoronary ASCs in combination with CsA-NP (ASCs + CsA-NP, n=6), or remained untreated (control, n=4). Animals were sacrificed 8 weeks later and were evaluated for cardiac function by delayed-enhanced magnetic resonance imaging and immunohistopathology. We observed that the left ventricular ejection fraction (LVEF) was significantly increased in the ASCs + CsA-NP group, compared to the CsA-NP group (53.6%±2.4% versus 48.6%±1.5%, P<0.05), and the ASCs group (53.6%±2.4% versus 48.3%±1.8%, P<0.05). More importantly, the infarct size was significantly smaller in the ASCs + CsA-NP group as compared to the CsA-NP group (6.2±1.7 cm3 versus 9.1±3.4 cm3, P<0.05) and the ASCs group (6.2±1.7 cm3 versus 7.5±0.6 cm3, P<0.05). These findings were further confirmed by analysis of the expression of cardiomyocyte markers, myosin heavy chain (α-actinin) and troponin T. In addition, the CsA-NP + ASCs treatment promoted neovascularization (P<0.05) and inhibited cardiomyocyte apoptosis (P<0.01) compared to the control group. This study demonstrates that CsA-NP enhanced the therapeutic benefits of ASCs transplantation for MI. Keywords: cyclosporine A nanoparticle emulsion, cyclosporine A, adipose tissue-derived stem cells, myocardial infarctio

    Interfacial thermal conductance in multilayer graphene/phosphorene heterostructure

    No full text
    202310 bcchAccepted ManuscriptOthersHong Kong Polytechnic UniversityPublishe
    corecore