1,178 research outputs found
Thermal properties of MgB2: the effect of disorder on gap amplitudes and relaxation times of p and s bands
We present thermal conductivity and specific heat measurements on MgB2 and
Mg-AlB2 samples. Thermal properties have been analysed by using a two-gap model
in order to estimate the gap amplitudes, D(0)p and D(0)s and the intra-band
scattering rates, Gss and Gpp. As a function of Al doping and disorder D(0)s
rapidly decreases, while D(0)p is rather constant. Gss and Gpp are increased by
the disorder, being Gpp more affected than Gss.Comment: 2 pages, 3 figures, presented to the conference M2S-HTSC, 25-30 May
2003, Rio de Janeir
Tetragonal to orthorhombic phase transition in SmFeAsO: a synchrotron powder diffraction investigation
The crystal structure of SmFeAsO has been investigated by means of Rietveld
refinement of high resolution synchrotron powder diffraction data collected at
300 K and 100 K. The compound crystallizes in the tetragonal P4/nmm space group
at 300 K and in the orthorhombic Cmma space group at 100 K; attempts to refine
the low temperature data in the monoclinic P112/n space group diverged. On the
basis of both resistive and magnetic analyses the tetragonal to orthorhombic
phase transition can be located at T about 140 K.Comment: Submitted to: Superconductor Science and Technology PACS: 61.05.cp,
61.66.Fn, 74.10.+v, 74.62.Dh, 74.70.D
Coupling between 4f and itinerant electrons in SmFeAsO1-xFx (0.15 < x < 0.2) superconductors: an NMR study
F NMR measurements in SmFeAsOF, for ,
are presented. The nuclear spin-lattice relaxation rate increases upon
cooling with a trend analogous to the one already observed in
CeCuAu, a quasi two-dimensional heavy-fermion intermetallic
compound with an antiferromagnetic ground-state. In particular, the behaviour
of the relaxation rate either in SmFeAsOF or in
CeCuAu can be described in the framework of the self-consistent
renormalization theory for weakly itinerant electron systems. Remarkably, no
effect of the superconducting transition on F is detected, a
phenomenon which can hardly be explained within a single band model.Comment: 4 figure
Role of heat and mechanical treatments in the fabrication of superconducting Ba0.6K0.4Fe2As2 ex-situ Powder-In-Tube tapes
Among the recently discovered Fe-based superconducting compounds, the
(K,Ba)Fe2As2 phase is attracting large interest within the scientific community
interested in conductor developments. In fact, after some years of development,
critical current densities Jc of about 105 A/cm2 at fields up to more than 10 T
have been obtained in powder in tube (PIT) processed wires and tapes. Here we
explore the crucial points in the wire/tape fabrication by means of the ex-situ
PIT method. We focus on scaling up processes which are crucial for the
industrial fabrication. We analyzed the effects on the microstructure of the
different heat and mechanical treatments. By an extensive microstructural
analysis correlated with the transport properties we addressed the issues
concerning the phase purity, the internal porosity and crack formation in the
superconducting core region. Our best conductors with a filling factor of about
30 heat treated at 800 C exhibited Tc = 38 K the highest value measured in such
kind of superconducting tape. The microstructure analysis shows clean and well
connected grain boundaries but rather poor density: The measured Jc of about 3
x 10^4 A/cm2 in self-field is suppressed by less than a factor 7 at 7 T. Such
not yet optimized Jc values can be accounted for by the reduced density while
the moderate in-field suppression and a rather high n-factor confirm the high
homogeneity and uniformity of these tapes
Role of Dirac cones in magnetotransport properties of REFeAsO (RE=rare earth) oxypnictides
In this work we study the effect of the rare earth element in iron
oxypnictides of composition REFeAsO (RE=rare earth). On one hand we carry out
Density Functional Theory calculations of the band structure, which evidence
the multiband character of these compounds and the presence of Dirac cones
along the Y-{\Gamma} and Z-R directions of the reciprocal space. On the other
hand, we explore transport behavior by means of resistivity, Hall resistance
and magnetoresistance measurements, which confirm the dominant role of Dirac
cones. By combining our theoretical and experimental approaches, we extract
information on effective masses, scattering rates and Fermi velocities for
different rare earth elements.Comment: 13 pages, 5 figures accepted for publication on European Journal of
Physics
Consequences of the peculiar intrinsic properties of MgB2 on its macroscopic current flow
The influence of two important features of magnesium diboride on the
macroscopic transport properties of polycrystalline MgB2 is discussed in the
framework of a percolation model. While two band superconductivity does not
have significant consequences in the field and temperature range of possible
power applications, the opposite is true for the anisotropy of the upper
critical field. The field dependence of the critical current densities strongly
increases and the macroscopic supercurrents disappear well below the apparent
upper critical field. The common scaling laws for the field dependence of the
volume pinning force are altered and Kramer's plot is no longer linear,
although grain boundary pinning dominates in nearly all polycrystalline MgB2
conductors. In contrast to the conventional superconductors NbTi and Nb3Sn, a
significant critical current anisotropy can be induced by the preparation
technique of MgB2 tapes
Influence of carbon substitution on the heat transport in single crystalline MgB2
We report data on the thermal conductivity \kappa(T,H) in the basal plane of
hexagonal single-crystalline and superconducting Mg(B_{1-x}C_x)_2 (x= 0.03,
0.06) at temperatures between 0.5 and 50 K, and in external magnetic fields H
between 0 and 50 kOe. The substitution of carbon for boron leads to a
considerable reduction of the electronic heat transport, while the phonon
thermal conductivity seems to be much less sensitive to impurities. The
introduction of carbon enhances mostly the intraband scattering in the
\sigma-band. In contrast to the previously observed anomalous behavior of pure
MgB, the Wiedemann-Franz law is valid for Mg(B_0.94 C_0.06)_2 at low
temperatures.Comment: 4 pages, 4 figures. Final version to appear in Phys. Rev.
Tuning topological disorder in MgB
We carried out Raman measurements on neutron-irradiated and Al-doped MgB
samples. The irradiation-induced topological disorder causes an unexpected
appearance of high frequency spectral structures, similar to those observed in
lightly Al-doped samples. Our results show that disorder-induced violations of
the selection rules are responsible for the modification of the Raman spectrum
in both irradiated and Al-doped samples. Theoretical calculations of the phonon
density of states support this hypothesis, and demonstrate that the high
frequency structures arise mostly from contributions at of the
E phonon mode.Comment: 4 pages, 4 figure
Anisotropic critical currents in FeSe0.5Te0.5 films and the influence of neutron irradiation
We report on measurements of the superconducting properties of FeSe05Te05
thin films grown on lanthanum aluminate. The films have high transition
temperatures (above 19 K) and sharp resistive transitions in fields up to 15 T.
The temperature dependence of the upper critical field and the irreversibility
lines are steep and anisotropic, as recently reported for single crystals. The
critical current densities, assessed by magnetization measurements in a vector
VSM, were found to be well above 10^9 Am-2 at low temperatures. In all samples,
the critical current as a function of field orientation has a maximum, when the
field is oriented parallel to the film surface. The maximum indicates the
presence of correlated pinning centers. A minimum occurs in three films, when
the field is applied perpendicular to the film plane. In the forth film,
instead, a local maximum caused by c-axis correlated pinning centers was found
at this orientation. The irradiation of two films with fast neutrons did not
change the properties drastically, where a maximum enhancement of the critical
current by a factor of two was found
- …