11 research outputs found

    Fenitrothion induced oxidative stress and morphological alterations of sperm and testes in male sprague-dawley rats

    Get PDF
    OBJECTIVE: Fenitrothion residue is found primarily in soil, water and food products and can lead to a variety of toxic effects on the immune, hepatobiliary and hematological systems. However, the effects of fenitrothion on the male reproductive system remain unclear. This study aimed to evaluate the effects of fenitrothion on the sperm and testes of male Sprague-Dawley rats. METHODS: A 20 mg/kg dose of fenitrothion was administered orally by gavages for 28 consecutive days. Blood sample was obtained by cardiac puncture and dissection of the testes and cauda epididymis was performed to obtain sperm. The effects of fenitrothion on the body and organ weight, biochemical and oxidative stress, sperm characteristics, histology and ultrastructural changes in the testes were evaluated. RESULTS: Fenitrothion significantly decreased the body weight gain and weight of the epididymis compared with the control group. Fenitrothion also decreased plasma cholinesterase activity compared with the control group. Fenitrothion altered the sperm characteristics, such as sperm concentration, sperm viability and normal sperm morphology, compared with the control group. Oxidative stress markers, such as malondialdehyde, protein carbonyl, total glutathione and glutathione S-transferase, were significantly increased and superoxide dismutase activity was significantly decreased in the fenitrothion-treated group compared with the control group. The histopathological and ultrastructural examination of the testes of the fenitrothion-treated group revealed alterations corresponding with the biochemical changes compared with the control group. CONCLUSION: A 20 mg/kg dose of fenitrothion caused deleterious effects on the sperm and testes of Sprague-Dawley rats

    The effect of tocotrienol-rich fraction on oxidative liver damage induced by fenitrothion

    Get PDF
    Exposure to organophosphate pesticide including fenitrothion (FNT) has led to many adverse effects on human health. However, a potent antioxidant like palm oil tocotrienol-rich fraction (TRF) can reduce oxidative damage in various pathological conditions, could also reduce the adverse effects by FNT. The aim of this study was to evaluate the effect of TRF on oxidative liver damage in FNT induce hepatotoxicity in experimental rats. A total of 40 male Sprague-Dawley rats were randomly divided into four groups of 10, namely control, TRF, FNT and TRF+FNT group. TRF (200 mg/kg body weight) and FNT (20 m/kg body weight) were administered through oral gavage for 28 days. Corn oil which served as vehicle was given orally to the control group. At the end of the study period, liver and blood was taken for oxidative damage and biochemical evaluation and histological observation. TRF supplementation prevents oxidative liver damage by reducing the hepatic malondialdehyde (MDA) and protein carbonyl (PCO) level significantly. Besides, TRF also restored the endogenous antioxidants particularly reduced glutathione (GSH), glutathione peroxidase (GPx) and ferric reducing/antioxidant power (FRAP). TRF also prevent liver damage by reducing the liver enzymes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The attenuation of liver damage by TRF was also showed histologically. In conclusion, TRF supplementation showed a potential in preventing oxidative liver damage in FNT-treated rats by reducing the oxidative damage and improving the antioxidant status

    EFFECT OF EURYCOMA LONGIFOLIA ON SEXUAL BEHAVIOR IN SEXUALLY DYSFUNCTIONAL MALE: A SYSTEMATIC REVIEW

    Get PDF
    Objective: This systematic review was conducted to summarize and evaluate the effect of Eurycoma longifolia (EL) on sexual behavior in the sexually dysfunctional male.Methods: Ovid Medline, Wiley Online Library, Scopus, BioMed Central, Hindawi and Google Scholar databases were searched for relevant studies published from 1995 to 2016 and search was limited to relevant studies published in English. Studies assessing aphrodisiac properties of EL on male sexual behavior in sexually dysfunctional animal models or human were included.Results: Among the 155 studies identified in the literature search, a total of 6 eligible articles (5 animal studies and one human study) were selected and reviewed. All studies reported positive aphrodisiac activities and supported the use of the plant as an aphrodisiac.Conclusion: This systematic review highlighted the effect of EL extract as an aphrodisiac agent to improve sexual behavior in the sexually dysfunctional male. Further studies are required to determine the specific mechanisms of action and identification of the bioactive components of EL responsible for its potential efficacy

    The Effects of Quassinoid-Rich Eurycoma longifolia Extract on Bone Turnover and Histomorphometry Indices in the Androgen-Deficient Osteoporosis Rat Model

    No full text
    Male osteoporosis is associated with higher rates of disability and mortality. Hence the search for suitable intervention and treatment to prevent the degeneration of skeletal health in men is necessary. Eurycoma longifolia (EL), a traditional plant with aphrodisiac potential may be used to treat and prevent male osteoporosis. The skeletal protective effect of quassinoid-rich EL extract, which has a high content of eurycomanone, has not been studied. This study aimed to determine whether EL could prevent skeletal deteriorations in gonadal hormone-deficient male rats. Ninety-six male Sprague–Dawley rats were randomly assigned to baseline, sham-operated (Sham), orchidectomised or chemically castrated groups. Chemical castration was achieved via subcutaneous injection of degarelix at 2 mg/kg. The orchidectomised and degarelix-castrated rats were then divided into negative control groups (ORX, DGX), testosterone-treated groups (intramuscular injection at 7 mg/kg weekly) (ORX + TES, DGX + TES), and EL-supplemented groups receiving daily oral gavages at doses of 25 mg/kg (ORX + EL25, DGX + EL25), 50 mg/kg (ORX + EL50, DGX + EL50), and 100 mg/kg (ORX + EL100, DGX + EL100). Following 10 weeks of treatment, the rats were euthanized and their blood and femora were collected. Bone biochemical markers, serum testosterone, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa β-ligand (RANKL) levels and histomorphometric indices were evaluated. Quassinoid-rich EL supplementation was found to reduce degenerative changes of trabecular structure by improving bone volume, trabecular number, and separation. A reduction in the percentage of osteoclast and increase in percentage of osteoblast on bone surface were also seen with EL supplementation. Dynamic histomorphometric analysis showed that the single-labeled surface was significantly decreased while the double-labeled surface was significantly increased with EL supplementations. There was a marginal but significant increase in serum testosterone levels in the ORX + EL25, DGX + EL50, and DGX + EL100 groups compared to their negative control groups. Quassinoid-rich EL extract was effective in reducing skeletal deteriorations in the androgen-deficient osteoporosis rat model

    Ameliorative effect of palm oil tocotrienol rich fraction on brain oxidative stress in fenitrothion-administered rats

    Get PDF
    Fenitrothion (FNT) usage has received much attention for its potential to promote free radicals generation and interfere with antioxidant defense system. The aim of the present study was to investigate the effect of palm oil tocotrienol rich fraction (TRF) supplementation on oxidative stress and histological changes in rat brain induced by FNT. A total of 32 male Sprague Dawley rats divided into four groups: control group which received corn oil; TRF group was received palm oil TRF (200 mg/kg bw); FNT group administered with FNT (20 mg/kg bw) and TRF+FNT group pretreated with palm oil TRF (200 mg/kg bw) 30 min prior to administration of FNT (20 mg/kg bw). FNT and TRF were dissolved in corn oil and all supplementations were given by oral gavage once daily for 28 days. After four weeks of supplementation, TRF+FNT rats had significantly lower malondialdehyde (MDA) content and superoxide dismutase (SOD) activity but higher reduced glutathione (GSH) level and total protein level compared to FNT rats (p<0.05). However, protein carbonyl (PC) level was insignificantly lower for TRF+FNT group compared to FNT group. In conclusion, this study suggested that palm oil TRF was effective in preventing brain damage in rats

    Association between Viral Infections and Risk of Autistic Disorder: An Overview

    No full text
    Autism spectrum disorder (ASD) is a neurodevelopmental condition of the central nervous system (CNS) that presents with severe communication problems, impairment of social interactions, and stereotypic behaviours. Emerging studies indicate possible associations between viral infections and neurodegenerative and neurobehavioural conditions including autism. Viral infection during critical periods of early in utero neurodevelopment may lead to increased risk of autism in the offspring. This review is aimed at highlighting the association between viral infections, including viruses similar to COVID-19, and the aetiology of autism. A literature search was conducted using Pubmed, Ovid/Medline, and Google Scholar database. Relevant search terms included “rubella and autism”, “cytomegalovirus and autism”, “influenza virus and autism”, “Zika virus and autism”, “COVID-19 and autism”. Based on the search terms, a total of 141 articles were obtained and studies on infants or children with congenital or perinatal viral infection and autistic behaviour were evaluated. The possible mechanisms by which viral infections could lead to autism include direct teratogenic effects and indirect effects of inflammation or maternal immune activation on the developing brain. Brain imaging studies have shown that the ensuing immune response from these viral infections could lead to disruption of the development of brain regions and structures. Hence, long-term follow up is necessary for infants whose mothers report an inflammatory event due to viral infection at any time during pregnancy to monitor for signs of autism. Research into the role of viral infection in the development of ASD may be one avenue of improving ASD outcomes in the future. Early screening and diagnosis to detect, and maybe even prevent ASD are essential to reduce the burden of this condition

    Recent Advances in Nanoencapsulation Systems Using PLGA of Bioactive Phenolics for Protection against Chronic Diseases

    No full text
    Plant-derived polyphenolic compounds have gained widespread recognition as remarkable nutraceuticals for the prevention and treatment of various disorders, such as cardiovascular, neurodegenerative, diabetes, osteoporosis, and neoplastic diseases. Evidence from the epidemiological studies has suggested the association between long-term consumption of diets rich in polyphenols and protection against chronic diseases. Nevertheless, the applications of these phytochemicals are limited due to its low solubility, low bioavailability, instability, and degradability by in vivo and in vitro conditions. Therefore, in recent years, newer approaches have been attempted to solve the restrictions related to their delivery system. Nanoencapsulation of phenolic compounds with biopolymeric nanoparticles could be a promising strategy for protection and effective delivery of phenolics. Poly(lactic-co-glycolic acid) (PLGA) is one of the most successfully developed biodegradable polymers that has attracted considerable attention due to its attractive properties. In this review, our main goal is to cover the relevant recent studies that explore the pharmaceutical significance and therapeutic superiority of the advance delivery systems of phenolic compounds using PLGA-based nanoparticles. A summary of the recent studies implementing encapsulation techniques applied to polyphenolic compounds from plants confirmed that nanoencapsulation with PLGA nanoparticles is a promising approach to potentialize their therapeutic activity
    corecore