22 research outputs found

    Differences in aggression as a relationship between sex and levels of video game playing

    Get PDF
    Video games have grown into a multibillion-dollar industry over the past 40 years. A number of studies have been carried out to explain the relationship between playing video games and the different levels of aggression it generates. This pilot study examines the differences in aggression present in males and females following video game playing. The purpose of the study is to explore the relationship between the amount of time spent playing video games and the type of video games played by both males and females with the amount of aggression it stimulates across different sex. The study uses theories like Uses and Gratification and the General Aggression model to explain the links between length of violent game play and aggression

    Therapeutic strategies for BRAF mutation in non-small cell lung cancer: a review

    Get PDF
    Lung cancer is the leading cause of cancer related deaths. Among the two broad types of lung cancer, non-small cell lung cancer accounts for 85% of the cases. The study of the genetic alteration has facilitated the development of targeted therapeutic interventions. Some of the molecular alterations which are important targets for drug therapy include Kirsten rat sarcoma (KRAS), Epidermal Growth Factor Receptor (EGFR), V-RAF murine sarcoma viral oncogene homolog B (BRAF), anaplastic lymphoma kinase gene (ALK). In the setting of extensive on-going clinical trials, it is imperative to periodically review the advancements and the newer drug therapies being available. Among all mutations, BRAF mutation is common with incidence being 8% overall and 1.5 – 4% in NSCLC. Here, we have summarized the BRAF mutation types and reviewed the various drug therapy available - for both V600 and nonV600 group; the mechanism of resistance to BRAF inhibitors and strategies to overcome it; the significance of comprehensive profiling of concurrent mutations, and the role of immune checkpoint inhibitor in BRAF mutated NSCLC. We have also included the currently ongoing clinical trials and recent advancements including combination therapy that would play a role in improving the overall survival and outcome of NSCLC

    VERNONIA CINEREA (NEICHITTI KEERAI) REGENERATES PROXIMAL TUBULES IN CISPLATININDUCED RENAL DAMAGE IN MICE

    Get PDF
    Objective: The aim of the study was to evaluate whether Vernonia cinerea (VC) regenerates the proximal renal tubular cells in cisplatin-induced necrosis in male Swiss albino mice.Methods: The crude aqueous extract (CAE) of VC was fractionated from non-polar to polar using different solvents. Mice were injected a single dose of cisplatin (15 mg/kg) on day 1, which took 5 days to cause maximal renal damage. From day 6, CAE and all fractions were orally administered (200, 300, and 400 mg/kg) for 5 continuous days. On day 11, blood was collected to estimate urea and creatinine. Kidney was collected for histology and grading was done.Results: Cisplatin induced proximal renal tubular damage (grade 5) in corticomedullary junction, characterized by necrosis, proximal tubular dilatation, inflammation and vasodilation. Aqueous fraction (AF) did not show any regeneration; whereas, 400 mg/kg dose of CAE and butanol fraction (BF) showed a significant reduction (p<0.001) in proximal tubular damage (Grade 3) and 50–75% regeneration of proximal tubular epithelial cells.Conclusion: This is the first study to demonstrate the regenerative potential of Neichitti kashayam (CAE of VC) and its BF in cisplatin-induced proximal tubular damage in kidney. Further study is warranted to find out the dose regimen for complete regeneration, lead compounds, and molecular mechanism

    High-order, high-fidelity simulation of unsteady shock-wave/boundary layer interaction using flux reconstruction

    Get PDF
    In this work, a high-order implicit large-eddy simulation of an oblique shockwave/boundary layer interaction at Mach 2.3 is performed. The high-order solver is based on the flux reconstruction method, allowing an arbitrary order of accuracy. A particular attention is paid to the shock-capturing technique which consists in a combination of a Laplacian artificial viscosity with the Ducros sensor. The ability of such a solver to accurately predict the flow features is assessed on both steady and unsteady fields. In particular, the typical lowfrequency motion of the reflected shock is reproduced. The shock-capturing methodology is proven to be efficient at resolving the shocks without damping the turbulence in the boundary layer. The results obtained give confidence in this solver to study in more details the shockwave/boundary layer interaction phenomenon and future work is focused on the analysis of the oscillatory turbulent field in the interaction region

    Acute superior vena cava obstruction due to tight pericardial closure following congenital defect repair

    Get PDF
    The obstruction of the superior vena cava (SVC) of acute onset nature following surgery is a rare and serious condition. The tight closure of the pericardium over the heart during surgical procedures may cause external compression on the SVC. Echocardiography and Computed tomography (CT) scan aids in the diagnosis. Cutting open the pericardial stitches relieves the condition

    HP-Multigrid for RANS-Modeled Turbulent Flows in a High-Order Flux Reconstruction Framework

    Get PDF
    High-order (HO) methods are of concerted academic and industrial interest in recent years due to their improved accuracy and their capability to deal with complex geometries [1]. Of particular note is the flux reconstruction method [2], which unifies several existing HO schemes into a simpler and computationally efficient approach that has been shown to work on all element types (including simplices) in two and three dimensions. There is considerable interest to apply HO methods to industrially relevant problems. At the same time, accurate and robust turbulence modeling techniques are essential for reliable results. As outlined in the National Aeronautics and Space Administration's CFD vision 2030 study, Large Eddy Simulation (LES) still remains impractical for industrial cases therefore, Reynolds-Averaged Navier Stokes (RANS) and hybrid RANS-LES methods hold high significance in the near future [4]. Achieving fastest convergence to steady-state is important in the context of RANS simulations, for which several convergence acceleration techniques are being investigated. Multigrid methods are an industry standard in Finite Volume (FV) type schemes and are increasingly being applied to HO methods in the form of p-multigrid [22]. They exploit the polynomial hierarchy of the solution space to represent errors on a coarser resolution. A natural extension of this idea is hp-multigrid, where we can augument the classical h-multigrid to the polynomial hierarchy [23]. In this paper we illustrate the application of high-order flux reconstruction methods to simulate compressible, turbulent flows on body-fitted meshes. The case in point is the turbulent flow over a flat plate [24]. Turbulence is modeled through the RANS approach using the one-equation Spalart-Allmaras model. Grid-coarsening for the h-levels is performed by removing every other line in each direction from the original mesh. The system is driven to a steady-state solution using hp-multigrid convergence acceleration with local time-stepping using an explicit Runge-Kutta time-marcher. We show that the augumented h-multigrid is highly effective with a 10X to 24X drop in convergence time

    Non-Modal Analysis of Multigrid Schemes for the High-Order Flux Reconstruction Method

    Get PDF
    The present study introduces an application of the non-modal analysis to multigrid operators with explicit Runge-Kutta smoothers in the context of Flux Reconstruction discretizations of the linear convection-diffusion equation. A dissipation curve is obtained that reflects upon the convergence properties of the multigrid operator. The number of smoothing steps, the type of cycle (V/W) and the combination of pand h-multigrid are taken into account in order to find those configurations which yield faster convergence rates. The analysis is carried out for polynomial orders up to P = 6, in 1D and 2D for varying degrees of convection (PĂ©clet number), as well as for high aspect ratio cells. The non-modal analysis can support existing evidence on the behaviour of multigrid schemes. W-cycles, a higher number of coarse-level sweeps or the combined use of hp-multigrid are shown to increase the error dissipation, while higher degrees of convection and/or high aspect-ratio cells both decrease the error dissipation rate

    High-Order Flux Reconstruction Based on Immersed Boundary Method

    Get PDF
    In the last decade, high-order methods for Computational Fluid Dynamics (CFD) are becoming attractive for unsteady scale-resolving-simulations in industrial CFD applications, due to their advantages of low numerical dissipation, high efficiency on modern architectures and quasi mesh-independence. However, the generation of body-fitted mesh for high-order methods is still a significant bottleneck and often determines the overall quality of the solution. To avoid the complexity of mesh generation, the present work combines the numerical advantages of the high-order Flux Reconstruction (FR) method and the simplicity of the mesh generation based on Immersed Boundary Method (IBM) that allows solving flow past obstacles on a non body-fitted mesh. The volume penalization method is selected for its ease of implementation and robustness. The proposed method is validated by several test cases, including flow past a cylinder and NACA0012 airfoil for static and moving boundaries. Good agreement with body-fitted simulation is reported

    Bicuspid Aortic Valve Disease: Classifications, Treatments, and Emerging Transcatheter Paradigms

    Get PDF
    Bicuspid aortic valve (BAV) is a common congenital valvular malformation, which may lead to early aortic valve disease and bicuspid-associated aortopathy. A novel BAV classification system was recently proposed to coincide with transcatheter aortic valve replacement being increasingly considered in younger patients with symptomatic BAV, with good clinical results, yet without randomized trial evidence. Procedural technique, along with clinical outcomes, have considerably improved in BAV patients compared with tricuspid aortic stenosis patients undergoing transcatheter aortic valve replacement. The present review summarizes the novel BAV classification systems and examines contemporary surgical and transcatheter approaches
    corecore