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Lung cancer is the leading cause of cancer related deaths. Among the two broad

types of lung cancer, non-small cell lung cancer accounts for 85% of the cases.

The study of the genetic alteration has facilitated the development of targeted

therapeutic interventions. Some of themolecular alterations which are important

targets for drug therapy include Kirsten rat sarcoma (KRAS), Epidermal Growth

Factor Receptor (EGFR), V-RAF murine sarcoma viral oncogene homolog B

(BRAF), anaplastic lymphoma kinase gene (ALK). In the setting of extensive on-

going clinical trials, it is imperative to periodically review the advancements and

the newer drug therapies being available. Among all mutations, BRAF mutation is

common with incidence being 8% overall and 1.5 – 4% in NSCLC. Here, we have

summarized the BRAF mutation types and reviewed the various drug therapy

available - for both V600 and nonV600 group; the mechanism of resistance to

BRAF inhibitors and strategies to overcome it; the significance of comprehensive

profiling of concurrent mutations, and the role of immune checkpoint inhibitor in

BRAF mutated NSCLC. We have also included the currently ongoing clinical trials

and recent advancements including combination therapy that would play a role

in improving the overall survival and outcome of NSCLC.

KEYWORDS

non-small cell lung cancer, BRAF mutation, BRAF mutation V600, non-V600 mutation,
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Introduction

Lung cancer is the second most common cancer worldwide. It is the leading cause of

cancer-related deaths accounting for 18% of all cancer related deaths (1, 2). In United states

alone, it will account for estimated 127,070 deaths in the year 2023 (3). Among the two

major subtypes, Non-small cell lung cancer (NSCLC) accounts for 85% of the cases (4).

NSCLC is significantly more common than small cell lung cancer (SCLC) and is further

subdivided into squamous and non-squamous histological types (5). Although the

classification between small cell and non-small cell is still widely used, molecular

classification demonstrates that this histological classification is no longer appropriate to
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guide therapy. NSCLC comprises a group of heterogenous tumors

having varied genetic alterations.

The most common genetic alteration associated with NSCLC is

Kirsten rat sarcoma (KRAS) and Epidermal Growth Factor

Receptor (EGFR) gene. They are involved in tumor initiation and

are important targets for drug therapy. Other important mutations

observed are anaplastic lymphoma kinase gene (ALK)

rearrangement, C-ROS oncogene 1 (ROS1). Certain molecular

alterations identified involve hepatocyte growth factor receptor

(MET) and human epidermal growth factor receptor 2 (HER2)

genes, rearranged during transfection (RET) gene, V-RAF murine

sarcoma viral oncogene homolog B (BRAF) and neurotrophic

tropomyosin receptor kinase (NTRK) gene (6). Mutations in

tumor protein 53 (TP53) have been observed in advanced stages

of NSCLC and is poor prognostic marker (7). The understanding of

the pathogenic alterations has led to advancement in the therapeutic

intervention available especially combination drug therapy and

immune checkpoint inhibitors (1, 8).
BRAF mutation

BRAF belongs to rapidly accelerated fibrosarcoma (RAF) group

of serine threonine group of kinases and is significantly involved in

cell proliferation and differentiation through the mitogen activated

protein kinase (MAPK) signaling pathway. The rat sarcoma (RAS)/

RAF-MAPK extracellular signal regulated kinase (ERK)-MAPK
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pathway can get activated by mutation at various levels in the

pathway. The various levels of mutation have been seen in multiple

cancers including melanoma, NSCLC, papillary thyroid cancer and

colorectal cancer and around 300 distinct BRAF mutations have been

identified (9–11). The incidence of BRAF mutation in all human

cancers is around 8% with the incidence in NSCLC being 1.5 - 4%

(12–15).

The mutations are broadly named as V600 codon and non-

V600 codon mutations and are divided into 3 categories as shown in

Figure 1. Class I mutant are constitutive active RAS independent

monomers that involves codon 600 (including V600 E/K/D/R)

causing strong activation of BRAF kinase. Class II comprises

constitutive active RAS independent dimers outside codon 600

(including K601, L597, G464, and G469 mutations) and are

located in the P loop segment. Class III includes RAS dependent

dimers and have impaired kinase activity. In this case the activity of

MAPK pathway is enhanced via raf-1 protooncogene CRAF

activation (16, 17). Class II and III are more prevalent for certain

tumor types (18). In clinical practice BRAF mutations are

commonly classified as V600 and non-V600 mutations. V600

have been seen more in female gender and has been seen as a

negative prognostic factor and non-V600 mutations are more seen

in male gender (19, 20). BRAF mutations, especially nonV600 have

been associated with history of smoking and have more propensity

towards central nervous system (CNS) involvement. Class I

mutations, however, have shown lower incidence of brain

metastasis at the time of diagnosis. Among the V600 codon
FIGURE 1

Classification of BRAF mutations.
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mutations, around 20-30% have no smoking history. V600

mutations is also associated with shorter disease-free survival

period (21, 22). The differences observed between the V600

mutation, mainly V600E, and Non-V600 have been summarized

in Table 1.
BRAF target drug therapy

BRAF inhibitors available are namely Sorafenib, Vemurafenib,

Dabrafenib and Encarafenib. MEK inhibitors namely, Trametinib,

Cobimetinib, Bimetinib block the ERK signaling in the MAPK

pathway and delays the emergence of resistance due to MAPK

pathway reactivation (23).

Sofrafenib has weak activity for mutant BRAF and also has

significant toxic effects. Vemurafenib (PLX4032) is a inhibitor of

mutated V600-BRAF (24). The side effects are dose related and

most common observed are rash, arthralgia, nausea, fatigue,

photosensitivity, pruritus, palmar-plantar dysesthesia and

cutaneous squamous cell carcinoma. A dose of 960 mg twice daily

has been determined to be tolerable (25). Dabrafenib is ATP-

competitive BRAF kinase inhibitor. The most common adverse

effects observed are fatigue, pyrexia and cutaneous squamous cell

carcinoma (26). Trametinib (GSK1120212) is a non-ATP

competitive inhibitor of both MEK1 and MEK2 (27). The

common toxicity observed are diarrhea, peripheral edema, skin

related toxicity. The cardiac and hepatic events observed have been

reported to be reversible on discontinuation of trametinib (28).

Very few studies are available in the context of Sofrafenib (29).

Carter et al (30) used Sorafenib in patients who had received

chemotherapy. The idea behind it was the combination could

delay tumor growth without increasing toxicity. Certain other

trials have been done but did not test for BRAF mutation status

(31, 32). It remains largely unexplored.

In the VE Basket trial, Vemurafenib 960 mg twice a day was

given to 62 patients with NSCLC having V600 mutations. It was a

phase II study. Out of the 62 patients, 54 were pretreated and 8 were

naïve. It was found that objective response rate (ORR) was similar

in both the groups – 37.5 in naïve and 37% in pretreated group. The

median progression-free survival (mPFS) was 6.1 and 12.9

respectively in pretreated and naïve groups whereas median

overall survival (mOS) was 15.4 in the pretreated group and not

reached in the naïve group (33).
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The EURAF study done by Gautschi et al. comprised of 35

patients. Out of these, 29 harbored V600 mutation and 6 were

nonV600. 5 patients were given BRAF inhibitor (BRAF-i) as first

line and 30 were given as subsequent line. So total of 39 lines of

BRAF-i were counted in the trial. 29 of the patients received

Vemurafenib, 9 received Dabrafenib and 1 received Sofrafenib.

The ORR in the V600 group treated with Vemurafenib (n=24)

was 54% and disease control rate (DCR) 96%. Overall, the study

showed mPFS of 5 months and OS of 10.8 months. In the nonV600

group, only a partial response and poor outcome was seen (34).

Another research by Mazieres et al. used Vemurafenib and all

the patients had more than one line of treatment. In the V600

mutation group the mean ORR was 44.9, mPFS 5.2 months and

mOS 10 months. In the nonV600 mutation group, no tumor

response was seen and the mPFS was 1.8 months (35).

Planchard et al. conducted a phase II non-randomized

controlled trial with Dabrafenib in advanced V600 positive

NSCLC. They conducted the trial under 3 separated arms. Group

A has 84 patients and used Dabrafenib monotherapy. Out of these,

6 were T/t naïve and 78 had received prior systemic therapy. The

ORR and DCR for pretreated group was 33% and 58% respectively.

Of the T/t naïve, 4 out of 6 had treatment response. Those treated

with 1-3 previous treatment lines had mPFS of 5.5 months and

mOS of 12.7 months. The Group B used combination Dabrafenib

and Trametinib in 57 pretreated V600 positive patients. The median

follow up was 16.6 months. The ORR was 68%, mPFS 10.2 months,

OS 18.2 months, DCR 81% and duration of response (DoR) 9.8

months. Five-year survival rate was 19%. The Group C used the

combination Dabrafenib-Trametinib therapy in 36 treatment naïve

patients. The median follow up was 16.3 months. The ORR was

found to be 64%, mFS 10.8 months, OS 17.3 months, DoR 10.2

months and the 5-year survival rate 22% (36–39).

Current guidelines recommend the combination of Dabrafenib

with Trametinib for BRAF V600 positive NSCLC (23). The studies

have been summarized in Table 2.
Resistance to BRAF kinase inhibitors

Despite the advances in the available BRAF inhibitors, the

disease progression will eventually occur with development of

either de novo or acquired BRAF pathway inhibitor resistance.

Delineation of resistance mechanism to elucidate alternative drug
TABLE 1 Difference between V600E mutation and non-V600E mutations.

V600E mutations Non- V600E mutations

More seen in Female gender Almost exclusively in male gender

More likely in never smokers.
Around 20-30% had no smoking history.

Associated with history of smoking.

Shorter disease-free survival period and overall survival rate Relatively longer disease-free survival period.

Negative prognostic factor Relatively positive prognostic factor

Relatively less propensity towards Central Nervous system (CNS) involvement More propensity towards CNS involvement

More aggressive histologic types seen, like micropapillary. Higher mutational burden, hence better response to immunotherapy
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targets could assist in formulation alternate drug strategies. The

bypass activation mutation seems to be the main cause of resistance,

out of which the most common are found in central MAPK nodes

and lead to MAPK reactivation (40). CRAF and A- raf (ARAF)

protooncogene isoforms have been observed in melanoma, which

could cause MAPK pathway activation once BRAF is inhibited and

cause BRAF-i resistance (41). The COT/TPL2 (MAP3K8)

expression has also been observed to cause de novo resistance in

melanoma cell lines (42). In BRAF V600 NSCLC, the activating

mutations like KRAS or neuroblastoma RAS oncogene (NRAS)

after use of BRAF-i or dual blockade with dabrafenib and

trametinib often have been observed as causing resistance. These

mutation bypasses the BRAF-V600 inhibition and leads to

activation of downstream MAPK pathway (43–45).

Resistance mechanism could also involve MAPK pathway

through reactivation of ERK signaling through BRAF splice

variants or BRAF gene amplification (12, 46). An institutional

prospective trial MATCH-R (“Matching Resistance”) revealed

potential mutation responsible for resistance, namely, MEK1,

NRAS Q61K, KRAS Q61R, and K57N (47). Sheikine et al.

identified new post-treatment mutations, that could corelated to

acquired resistance. They reported mutations involving KRAS

(G12R, K61H, G12D, V141), NRAS (Q61K), a rearrangement in

the setting of V600E, biallelic inactivation of SMARCA4 and a

homozygous deletion of MAPK2K4 (48). Some less common

mechanism could involve other pathways, like activation of PI3K/

mTOR through mutations in AKT activation and loss of function of

PTEN (12).

The expression of a ligand dependent stimulation of RTKs and

p61(aberrant BRAF V600 splice form) are other potential

mechanism of MAPK pathway reactivation. Activation of

signaling pathway, like phosphatidylinositol-3-kinase – protein

kinase B – mammalian target of rapamycin (PI3K/AKT/mTOR)

have also been described (49, 50). A case with protein kinase B
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(AKT) mutation was reported in BRAF-V600 mutant NSCLC. The

resistance occurs through engagement of EGFR signaling. The

resistance might be overcome by using combined BRAF-i and

EGFR inhibitors (49). Autocrine activation of fibroblast growth

factor receptor (FGFR) leads to sustained extracellular signal-

regulated kinases (ERK) activation and has been more commonly

seen in dual BRAF/MEK inhibitor resistance. The potential utility of

FGFR inhibitors in such cases could be a promising strategy (50).

Planchard et al. had reported presence of co-mutations and

alteration of phosphatidylinositol-3-kinase (PI3K) pathway as a

negative prognostic factor (39).

Rudin et al. reported a patient to have developed KRAS (G12D)

mutation after use of Dabrafenib. Secondary mutations in TP53 and

cyclin dependent kinase inhibitor 2A (CDKN2A) were also found.

They are not directly related to RAF-dependent pathway and role to

the resistance attained is not clear (43). A case of metastatic lung

adenocarcinoma was reported by Abravanel et al. wherein the

patient received a combination therapy with dabrafenib and

trametinib. Initially significant response to therapy was seen,

however, within 21 weeks of therapy the patient’s disease

progressed and was found to have acquired NRAS-Q61K

mutation (44). This patient also has remote history of breast

cancer, could the presence/history of another malignancy

influence the acquisition of the resistance mutations could be

further studied. The RAF activation pathway with potential

resistance mechanisms is summarized in Figure 2.

It is imperative to do a comprehensive profiling of the possible

co-occurring mutations, to detect the presence of acquired

resistance. It would play a significant role in choosing the

currently available targeted therapies and guide the scientific

community in designing clinical trials targeting the specific

resistance. A multi-gene testing panel rather than a single gene

panel is more suitable to detect the mutations. Some of the methods

to detect this resistance mechanism include analyses of circulating
TABLE 2 Studies in targeted therapy for BRAF-mutant NSCLC.

Name Study
Design

BRAF-I used Number of
patients

Lines of
treatment

mPFS
(months)

mOS or OS
(months)

ORR (%)

VE Basket
Trial

Phase 2 Vemurafenib 62 54 pretreated 6.1 15.4 37

8 naive 12.9 Did not reach 37.5

EURAF Retrospective Vemurafenib 24 Pretreated +
naive

5 10.8 54%

Dabrafenib 9

Sofrafenib 1

Mazieres
et al

Phase 2 Vemurafenib 101 V600, 17 non-
V600

Pretreated 5.2
1.8

10
5.2

44.9
0 (cohort
stopped)

Planchard
et al
Cohort A:

Phase 2 Dabrafenib 84 78 pretreated 6
naive

5.5
NA

12.7
NA

33
NA

Cohort B: Dabrafenib +
Trametinib

57 Pretreated 10.2 18.2 68

Cohort C: Dabrafenib +
Trametinib

36 Naive 10.8 17.3 64
NA, Not applicable.
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tumor DNA (ctDNA) (51). Liquid biopsy is a non-invasive analysis

using either ctDNA or plasma circulating tumor cells. Analytes

could also include circulating cell-free DNA or RNA, tumor

educated platelets and circulating extracellular vesicles. This

method resolves the issues of tissue scarcity and damage

associated with the standard tissue biopsy (52, 53). Currently, real

time polymerase chain reaction (PCR) and Next generation

sequencing (NGS) are the most used methods. It can facilitate

testing of multiple biomarkers with use of small amount of tumor

tissue. However, the use of NGS has its own drawbacks. It has a high

turnaround time and requires use of expensive and high-end

equipment and reagents; hence it is not yet accessible all round

the world. Cohen et al. reported that combination of sequential

DNANGS and RNANGS is the most efficient strategy for mutation

detection in smoking associated NSCLC and recommended a

parallel approach for never smokers (54). In current practice, all

metastatic or locally advanced NSCLC should be tested for driver

mutations including BRAF, MET, RET, NTRK, KRAS, HER2 if

common mutations EGFR, ALK and ROS protooncogene are

negative (55, 56).
Comprehensive profiling of
concurrent mutations

The rate of presence of concurrent mutations in BRAF mutated

NSCLC has been reported to have a wide range from 14.3 to 30.2%.

It is much higher than concurrent mutation rate seen in other driver

mutations (5%) (57–59). Qu et al. reported TP53 to be the most

common occurring co-mutation, 6 out of 53 (11.3%) patients
Frontiers in Oncology 05
included in the study (59). Mayall et al. also reported TP53 to be

the most common concurrent mutation (5 out of 8 patients) in the

cohort studied. There was no similarity observed in any of the

observed five mutations, each of the mutation was unique. The

alterations noted were C343F (725 G>T), R248L (743 G>T), E298X

(892 G>T), I195T, and splice site 559 + 1 G>C (60). In a

retrospective analysis by Krohn et al. in 174 patients, co-

occurring mutations were found in 70% (121) BRAF mutated

patients. TP53 was found as the most frequent (74%, 89 patients)

co-alteration (61). The co-occurrence of other mutations seen with

BRAF have been EGFR, PI3KA, KRAS, ALK translocation, c-MET

amplification, MSH2mutation, AXIN2 mutation (15, 19, 59). BRAF

V600 and non-V600 mutated NSCLC, both have been reported to

have concurrent mutations. Cardarella et al (15) reported presence

of KRAS in nonV600 NSCLC and Kinno et al (62) reported

presence of EGFR along with non-V600 BRAF mutated NSCLC.

It would be interesting to explore whether BRAF are the primary or

secondary oncogenic driver mutations in these cases.

Patients with double mutations have been found to have

inferior overall survival compared with single BRAF mutation.

TP53 and PI3KA co-mutation carries a negative prognosis (39,

58, 59). Hence, important is the role of PCR or NGS in multiplex

genotyping for comprehensive profiling of the NSCLC patients to

decipher the presence of concurrent mutations. To target co-

mutations associated with BRAF, double or triple targeted

therapy is used. EGFR targeting tyrosine kinase inhibitors (TKI)

are used NSCLC having BRAF plus EGFR mutations. KRAS co-

mutation was given Dabrafenib-Trametinib therapy (59). The use

of immunotherapy, specifically immune checkpoint inhibitors

(ICIs), is more and more being used as a solution to BRAF co-
FIGURE 2

RAF activation pathway and potential Resistance Mechanism.
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mutations (63). More research is needed to study the clinical

implications of the use of multi-targeted chemotherapy drugs and

immune therapy in concurrent mutations.
Immune checkpoint inhibitor
therapy - monotherapy vs
combination therapy

Very limited studies in the form of retrospective studies

demonstrated Programmed cell death ligand 1 (PD-L1) positivity

in NSCLC with BRAF mutations (64–66). Dudnik et al.

demonstrated that use immune checkpoint inhibitors (ICIs) in

BRAF mutated patients had a limited response and is similar to

the unselected population. They included 39 BRAF mutated

patients treated with ICIs. Out which 22 (12 V600 and 10

nonV600) - 10 with Pembrolizumab, 11 with Nivolumab and 1

with atezolizumab. The ORR 25% and 33% and mPFS was 3.7% and

4.1% respectively for the two groups. mOS was not achieved in

either of the groups. A low/intermediate tumor mutation burden

(TMB) and microsatellite-stable status was found in BRAF mutated

NSCLC patients (67). Several other studies also observed a similar

response. One study showed ORR, mPFS and mOS of 28.1%, 3.0

and 13.1 months, respectively treated with ICIs in second line of

treatment (68). The ORR of PDL1 inhibitor as the only therapy in

BRAF-mutant patients is about 10%–30%, with a mPFS of 2–4

months. Guisier et al. supported that the PDL1 inhibitor being used

as a second-line ICI monotherapy is similar in to wild-type NSCLC

(69). Similar results were obtained by Rihawi et al (70). Offin et al.

demonstrated improved ORR of 22% and OS 2.4 years in non-V600

mutations when compared to V600 mutations (71). The non-V600

mutated NSCLC are seen more in non-smoker and have been found

to have increased TMB and hence, a better response to ICIs (71–73).

In summary, these data indicated limited efficacy of ICIs in BRAF

mutant NSCLC. However, the efficacy of PDL1 inhibitors in

patients of advanced NSCLC has been noted. This could be

attributed to an increased expression of PDL1 in BRAF mutant

NSCLC in comparison to wild type (67, 72).

Some of the ongoing trials are exploring a combination regimen

of ICIs and targeted BRAF-I and MEK-inhibitor (MEK-i) therapies.

The concept is based on the fact that PDL1 expression has been found

in BRAF mutants and BRAF-i and MEK-i improve T cell mediated
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immune activation. The preclinical data suggested that inhibition of

BRAF and MEK pathway leads to increased activity of CD4 and CD8

T cells and thereby ability to destroy tumor cells. It also leads to

increased granzyme B and perforin levels along with increased

expression of cytotoxic T-lymphocyte-associated protein 4

(CTLA4) (74–77). The use of anti-CTLA-4 and MEK-i like

Selumetinib and Trametinib has shown to provide survival benefit

in murine K-ras bearing tumors (78, 79). A stage IV V600 BRAF

mutant NSCLC was reported to have achieve a longer period of

response when combination of Atezolizumab and chemotherapy was

used (80). Hellmann et al. investigated the combination cobimetinib

and atezolizumab in patients with solid tumors covering colorectal

cancer, melanoma and NSCLC. Out of the total 152 participants, 28

were NSCLC patients and were found to have ORR of 18%, mOS of

13.2 months. The 12-month PFS and OS for NSCLC was 29% and

57% respectively (81). The enrollment for an ongoing randomized

phase II/II study, the B-FAST trial (NCT03178552), is currently

underway for patients with advanced or metastatic NSCLC that are

found to harbor somatic mutations of have TMB using blood based

NGS ctDNA assay. In the cohort E of this trial, the V600 mutant

patients are being given the triplet of Vemurafenib, cobimetinib and

atezolizumab after a run-in period of BRAF-i/MEK-i combination.

This preliminary data about combination ICI-BRAF-i/MEK-i

targeted therapy warrants further studies to establish an

appropriate drug combination and safety and clinical efficacy (82).

Some of the ICIs have been summarized in Table 3.
Recent advances and
future prospectives

On June 22, 2022, the FDA granted accelerated approval to

dabrafenib- trametinib combination for the treatment of all patients

more than or equal to 6 years of age with unresectable or metastatic

BRAF-V600E mutant solid tumors, who have no alternate

treatment option and have progressed following prior treatment.

It is not indicated for wild-type BRAF solid tumors. It was based on

evaluation of 131 adult patients from open-label, cohort trials

BRF117019 (NCT02034110) and NCI-MATCH (NCT02465060),

36 pediatric patients from CTMT212X2101 (NCT02124772), and

supported by results in COMBI-v, COMBI-d, and BRF113928.

From the adult patient group, 54 (41% 95% confidence interval of
TABLE 3 Immune checkpoint inhibitors in BRAF-mutant NSCLC.

Trial Study Design ICI Number of patient/lines mPFS (s) mOS (months) ORR (%

Dudnek Retrospective 10 Pembrolizumab
11 Nivolumab
1 Atezolizumab

12 V600
10 non-V600

3.7
4.1

NA
NA

25
33

Mazieres Retrospective ICI 43 3.1 13.6 24

Guisier Retrospective

Offin Retrospective 10 V600
36 nonV600

NA
NA

NA
28.8

10
22

Hellman Phase 1/1b Cobimetinib and Atezolizumab 28 NSCLC 29% 13.2 18
fron
NA, Not applicable.
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33,50) experienced ORR. The most common adverse reactions in

the adults were nausea, rash, fever, chills, fatigue, headache,

myalgia, constipation, diarrhea, arthralgia and edema. In adults,

the dose recommended for dabrafenib is 150 mg oral twice daily

with Trametinib 2 mg oral once daily (83).

PHAROS trial (84) is an open-label, non-randomized, Phase 2

at a multicenter level is going on to determine the safety and efficacy

of Encorafenib in combination with Binimetinib in NSCLC patients

with BRAF V600 mutation. The patients who were treatment naïve,

or first line treatment with an anti-PD1 given as monotherapy of

with a platinum-based chemotherapy were enrolled. A total of 98

patients have been recruited. The doses used were 450 mg once

daily of Encorafenib and 45 mg twice daily of Binimetinib for a 28-

day cycle. Primary set endpoint of ORR was met. Currently, the

combination is approved for use in BRAF -V600 positive melanoma

patients. A supplemental new drug application (SNDA) is currently

under review by the FDA for patients with metastatic NSCLC w a

BRAF V600 mutation (85, 86).
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ENCO-BRAF trial is another Phase 2 trial currently recruiting

patients to assess the Encorafenib and Binimetinib on the same

dosing schedule (87).

LXH254 (BRAF inhibitor) plus LTT462 (ERK ½ inhibitor) is

being explored for its efficacy in advanced metastatic K-ras or

BRAF-mutant NSCLC under clinical trial NCT02974725 (88).

Lifirafenib (BGB-283) is a novel RAF kinase and EGFR

inhibitor and antitumor activity in B-RAF mutated solid tumors

and KRAS mutant NSCLC with tolerable adverse effects. Future

exploration is warranted to explore lifiranib monotherapy of

combination therapy in patient with BRAF-i resistance and

harbouring RAS mutations (89).

Another Phase I multicenter study (NCT03284502) is exploring

the dose, safety and pharmacokinetics of HM95573 in combination

with either Cobimetinib or Cetuximab in locally advanced or

metastatic Solid Tumors (90).

Some of the current ongoing trials have been summarized

in Table 4.
TABLE 4 Ongoing Clinical trials with targeted therapy.

Clinical Trial Study Design Experiemental Drug Type of BRAF
incuded

Patient population Status

PHAROS (84,
91)
(NCT03915951)

Open label, phase
2 multicenter

Encorafenib (BRAF inhibitor)
with Binimetinib (MEK inhibitor)

BRAF V600 Treatment naïve or post anti-PD1 treatment. Active, Not
recruting
SNDA under
FDA review

ENCO-BRAF
(87)
(NCT04526782)

Open label, phase
2, multicenter
multicohort

Encorafenib with Binimetinib BRAF V600 Treatment naïve or pretreated. Recruiting

OCEAN II (92)
(NCT05195632)

Open label, phase
2, single arm

Encorafenib with Binimetinib BRAF V600E BRAF and MEK-inhibitor treatment naïve;
First or second line

Recruiting

NCT03905148
(93)

Phase 1b, Open
labe

Lifirafenib (RAF inhibitor) and
Mirdametinib (MEK inhibitor)

All advanced tumors
including BRAF
mutant NSCLC

Advanced or metastatic tumor Recruiting

LANDSCAPE
1011
(NCT04585815)
(94)

Phase 1b/2 Open
Label Umbrella

Sasanlimab (PD-1 antagonist
monoclonal antibody)

Sub-Study A Phase
Ib & 2: BRAF V600

Advances NSCLC Active, Not
recruiting

NCT05065398
(95)

Phase 2, Open
label, multicenter

HLX208 BRAF V600 Pretreated advanced BRAF NSCLC Recruiting

NCT03284502
(96)

Phase 1,
multicenter

HM95573 with Cobimetinib or
Cetuximab

RAF mutant solid
tumors
Expansion cohort –
class II and II BRAF

Advanced RAF positive NSCLC Recruiting

NCT02974725
(88)

Phase 1b, open
label, multicenter

LXH254 with LTT462 or
Trametinib or Ribociclib

All BRAF Advanced or metastatic BRAF or KRAS
mutant NSCLC

Active, not
recruiting

ENHANCE (97)
(NCT05275374)

Phase 1/2a XP-102; XP-102 with Trametinib BRAF V600 Advanced BRAF malignant tumors –
melanoma, colorectal, NSCLC, thyroid.

Not yet
recruiting

B-FAST (82)
(NCT03178552)

Phase 2/3, Open
label, muticenter,
multicohort

Cohort E: Atezolizumab,
Cobimetinib, Vemurafenib

Cohort E: BRAF
V600

Unresectable, advanced or metastatic BRAF
V600 mutation

Recruiting.
(Enrollment
for cohort E is
complete)

(Continued)
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Conclusion

Precision medicine has revolutionized modern oncology.

However, despite the significant progress made in the landscape

of NSCLC, treatment for BRAF mutated NSCLC is not satisfactory

due to low incidence of this disease. Dabrafenib and Trametinib is

the only approved treatment of choice for BRAF-V600E mutated

NSCLC and exhibits poor efficacy against non-V600E

mutations. As mentioned above, the common mechanisms of

resistance for V600E mutant NSCLC involves MAPK reactivation,

loss of length BRAF V600E in concert with expression of a

truncated form of mutant protein and enhanced EGFR signaling

(49). Mechanisms of resistance for BRAF V600E have not been

clearly defined. Molecular profiling with next generation

sequencing, genomics and single cell sequencing may help in

identifying resistance pathways and mutations. Further research is

warranted to elucidate and identify mechanisms of resistance in

BRAF non-V600E NSCLC and to develop drugs to overcome

resistance in BRAF mutations. It is imperative to conduct more

clinical trials in future to explore sequencing of therapy and to

develop targets targeting resistance of BRAF inhibitors. In future, it

will be exciting to see if BRAF inhibitors will have a role in

neoadjuvant or adjuvant setting in this group of patients.
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TABLE 4 Continued

Clinical Trial Study Design Experiemental Drug Type of BRAF
incuded

Patient population Status

NCT04892017
(98)

Phase 1/2, Open
label, multicenter

DCC-3116 (monotherapy and in
combination with trametinib,
binimetinib, or sotorasib

All BRAF Advanced or metastatic solid tumors with
RAS/MAPK pathway mutation

Recruiting

NCT04913285
(99)

Phase 1/2, Open
label, multicenter

KIN-2787 All BRAF Recruiting

NCT03049618
(100)

Phase 2a sEphB4-HAS (fusion protein)
with Pembrolizumab (anti PD-1)

All BRAF Locally advanced or metastatic non-small cell
lung cancer progressed after at least 1 line of
platinum-based chemotherapy

Active, Not
recruiting

NCT04566393
(101)

Expanded access Ulixertinib (BVD-523) (ERK1/2
inhibitor)

All BRAF Advanced NSCLC in altered MAPK pathway Available

NCT04439279
(102)
(MATCH-
Subprotocol R)

Phase 2 Trametinib (MEK1/2 inhibitor) BRAF fusion, non-
V600 mutations

Patients With BRAF Fusions, or NonV600E or
Non-V600K BRAF Mutations

Active, Not
recruiting

NCT04249843
(103)

Phase 1a/1b BGB 3245 (RAF Dimer inhibitor) Class II and III
BRAF mutations

Advanced or refractory tumore Recruiting

NCT04488003
(104)

Phase 2,
multicenter

Ulixertinib (BVD-523) BRAF Non-V600 Advanced Malignancies Harboring MEK or
Atypical BRAF Alterations

Active, Not
recruiting

NCT02428712
(105)

Phase 1/2a FORE8394 BRAF V600 or Non
V600

Advanced unresectable solid tumors Active, Not
recruiting

NCT03843775
(106)

Phase 1/2 Binimetinib and Encorafenib Non V600 BRAF Metastatic or advanced-malignant tumors. Active, Not
recruiting
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