707 research outputs found

    Effect of blade row interaction on rotor film cooling

    Get PDF
    Abstract The mechanisms of blade row interaction affecting rotor film cooling are identified to make recommendations for the design of film cooling in the real, unsteady turbine environment. Present design practice makes the simplifying assumption of steady boundary conditions despite intrinsic unsteadiness due to blade row interaction; we argue that if film cooling responds nonlinearly to unsteadiness, the time-averaged performance will then be in error. Nonlinear behavior is confirmed using experimental measurements of flat-plate cylindrical film cooling holes, mainstream unsteadiness causing a reduction in film effectiveness of up to 31% at constant time-averaged boundary condition. Unsteady computations are used to identify the blade row interaction mechanisms in a high-pressure turbine rotor: a “negative jet” associated with the upstream vane wake, and frozen and propagating vane potential field interactions. A quasi-steady model is used to predict unsteady excursions in momentum flux ratio of rotor cooling holes, with fluctuations of at least ±30% observed for all hole locations. Computations with modified upstream vanes are used to vary the relative strength of wake and potential field interactions. In general, both mechanisms contribute to rotor film cooling unsteadiness. It is recommended that the designer should choose a cooling configuration that behaves linearly over the expected unsteady excursions in momentum flux ratio as predicted by a quasi-steady hole model.Mitsubishi Heavy Industrie

    Reducing instrumentation errors caused by circumferential flow field variations in multi-stage axial compressors

    Get PDF
    Abstract The effects of blade row interactions on stator-mounted instrumentation in axial compressors are investigated using unsteady numerical calculations. The test compressor is an 8-stage machine representative of an aero-engine core compressor. For the unsteady calculations, a 180deg sector (half-annulus) model of the compressor is used. It is shown that the time-mean flow field in the stator leading edge planes is circumferentially non-uniform. The circumferential variations in stagnation pressure and stagnation temperature respectively reach 4.2% and 1.1% of the local mean. Using spatial wave number analysis, the incoming wakes from the upstream stator rows are identified as the dominant source of the circumferential variations in the front and middle of the compressor, while towards the rear of the compressor, the upstream influence of the eight struts in the exit duct becomes dominant. Based on three circumferential probes, the sampling errors for stagnation pressure and stagnation temperature are calculated as a function of the probe locations. Optimization of the probe locations shows that the sampling error can be reduced by up to 77% by circumferentially redistributing the individual probes. The reductions in the sampling errors translate to reductions in the uncertainties of the overall compressor efficiency and inlet flow capacity by up to 50%. Recognizing that data from large-scale unsteady calculations is rarely available in the instrumentation phase for a new test rig or engine, a method for approximating the circumferential variations with single harmonics is presented. The construction of the harmonics is based solely on the knowledge of the number of stators in each row and a small number of equi-spaced probes. It is shown how excursions in the sampling error are reduced by increasing the number of circumferential probes.Industry funde

    Bleed-induced distortion in axial compressors

    Get PDF
    In this paper, the influence of nonuniform bleed extraction on the stability of an axial flow compressor is quantified. Nonuniformity can be caused by several geometric factors (for example, plenum chamber size or number of off-take ducts), and a range of configurations is examined experimentally in a single stage compressor. It is shown that nonuniform bleed leads to a circumferential distribution of flow coefficient and swirl angle at inlet to the downstream stage. The resultant distribution of rotor incidence causes stall to occur at a higher flow coefficient than if the same total bleed rate had been extracted uniformly around the circumference. A connection is made between the analysis of nonuniform bleed extraction and the familiar DCθ criterion used to characterize inlet total pressure distortion. The loss of operating range caused by the nonuniform inlet flow correlates with the peak sector-averaged bleed nonuniformity for all the bleed configurations tested.This is a metadata record relating to an article that cannot be shared due to publisher copyright

    Secondary Flow Control in Low Aspect Ratio Vanes Using Splitters

    Get PDF
    Low aspect ratio vanes, often the result of overall engine architecture constraints, create strong secondary flows and high end-wall loss. In this paper, a splitter concept is demonstrated that reduces secondary flow strength and improves stage performance. An analytic conceptual study, corroborated by inviscid computations, shows that the total secondary kinetic energy (SKE) of the secondary flow vortices is reduced when the number of passages is increased and, for a given number of vanes, when the inlet end-wall boundary layer is evenly distributed between the passages. Viscous computations show that, for this to be achieved in a splitter configuration, the pressure-side leg of the low aspect ratio vane horseshoe vortex, must enter the adjacent passage (and not “jump” in front of the splitter leading edge). For a target turbine application, four vane designs were produced using a multi-objective optimization approach. These designs represent current practice for a low aspect ratio vane, a design exempt from thickness constraints, and two designs incorporating splitter vanes. Each geometry is tested experimentally, as a sector, within a low-speed turbine stage. The vane designs with splitter geometries were found to reduce the measured secondary kinetic energy, by up to 85%, to a value similar to the design exempt from thickness constraints. The resulting flow field was also more uniform in both the circumferential and radial directions. One splitter design was selected for a full annulus test where a mixed-out loss reduction, compared to the current practice design, of 15.3% was measured and the stage efficiency increased by 0.88%.The work was funded by Rolls-Royce plc under the SILOET 2 work package

    Loss in axial compressor bleed systems

    Get PDF
    Abstract Loss in axial compressor bleed systems is quantified and the loss mechanisms are identified to determine how efficiency can be improved. For a given bleed air pressure requirement, reducing bleed system loss allows air to be bled from further upstream in the compressor, with benefits for the thermodynamic cycle. A definition of isentropic efficiency, which includes bleed flow is used to account for this. Two cases with similar bleed systems are studied: a low-speed, single-stage research compressor, and a large industrial gas turbine high-pressure compressor. A new method for characterizing bleed system loss is introduced, using research compressor test results as a demonstration case. A loss coefficient is defined for a control volume including only flow passing through the bleed system. The coefficient takes a measured value of 95% bleed system inlet dynamic head and is shown to be a weak function of compressor operating point and bleed rate, varying by ±2.2% over all tested conditions. This loss coefficient is the correct nondimensional metric for quantifying and comparing bleed system performance. Computations of the research compressor and industrial gas turbine compressor identify the loss mechanisms in the bleed system flow. In both cases, approximately two-thirds of total loss is due to shearing of a high-velocity jet at the rear face of the bleed slot, one-quarter is due to mixing in the plenum chamber, and the remainder occurs in the off-take duct. Therefore, the main objective of a designer should be to diffuse the flow within the bleed slot. A redesigned bleed slot geometry is presented that achieves this objective and reduces the loss coefficient by 31%.Mitsubishi Heavy Industrie
    corecore