959 research outputs found

    Highly polarized electrically driven single-photon emission from a non-polar InGaN quantum dot

    Get PDF
    © 2017 Author(s). Nitride quantum dots are well suited for the deterministic generation of single photons at high temperatures. However, this material system faces the challenge of large in-built fields, decreasing the oscillator strength and possible emission rates considerably. One solution is to grow quantum dots on a non-polar plane; this gives the additional advantage of strongly polarized emission along one crystal direction. This is highly desirable for future device applications, as is electrical excitation. Here, we report on electroluminescence from non-polar InGaN quantum dots. The emission from one of these quantum dots is studied in detail and found to be highly polarized with a degree of polarization of 0.94. Single-photon emission is achieved under excitation with a constant current giving a g(2)(0) correlation value of 0.18. The quantum dot electroluminescence persists up to temperatures as high as 130 K

    Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots

    Get PDF
    Solid-state single photon sources with polarisation control operating beyond the Peltier cooling barrier of 200 K are desirable for a variety of applications in quantum technology. Using a non-polar InGaN system, we report the successful realisation of single photon emission with a g((2))(0) of 0.21, a high polarisation degree of 0.80, a fixed polarisation axis determined by the underlying crystallography, and a GHz repetition rate with a radiative lifetime of 357 ps at 220 K in semiconductor quantum dots. The temperature insensitivity of these properties, together with the simple planar epitaxial growth method and absence of complex device geometries, demonstrates that fast single photon emission with polarisation control can be achieved in solid-state quantum dots above the Peltier temperature threshold, making this system a potential candidate for future on-chip applications in integrated systems

    Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator

    Get PDF
    We present a new laser system and nonlinear microscope, designed for differential nonlinear microscopy. The microscope features time-correlated single photon counting of multiphoton fluorescence generated by an alternating pulse-train of orthogonally polarized pulses. The generated nonlinear signal is separated using home-built electronics. Results are presented on fluorescence-detected nonlinear absorption linear anisotropy (FDNALA) of chloroplasts in Asparagus Sprengerii Regel and of Congo Red-stained cellulose

    Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities.

    Get PDF
    Low-threshold lasers realized within compact, high-quality optical cavities enable a variety of nanophotonics applications. Gallium nitride materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light-matter interactions and realize practical devices such as efficient light-emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low-threshold lasers have not been clearly demonstrated. This work seeks to better understand the reasons for these limitations by focusing on the simpler, limited-mode microdisk cavities, and by carrying out comparisons of lasing dynamics in those cavities using varying gain media including InGaN quantum wells, fragmented quantum wells, and a combination of fragmented quantum wells with quantum dots. For each gain medium, we use the distinctive, high-quality (Q ∼ 5,500) modes of the cavities, and the change in the highest-intensity mode as a function of pump power to better understand the dominant radiative processes. The variations of threshold power and lasing wavelength as a function of gain medium help us identify the possible limitations to lower-threshold lasing with quantum dot active medium. In addition, we have identified a distinctive lasing signature for quantum dot materials, which consistently lase at wavelengths shorter than the peak of the room temperature gain emission. These findings not only provide better understanding of lasing in nitride-based quantum dot cavity systems but also shed insight into the more fundamental issues of light-matter coupling in such systems.This is the author's accepted manuscript. The final version is available from PNAS at http://www.pnas.org/content/111/39/14042.abstract

    Analyzing Ball Bearing Capacitance using Single Steel Ball Bearings - Data

    Get PDF
    Supplementary data to the publication "Analyzing Ball Bearing Capacitance using Single Steel Ball Bearings" by Steffen Puchtler, Julius van der Kuip and Eckhard Kirchner published in Tribology Letters by Springer. Capacitance measurements of hybrid ball bearings with a single steel rolling element were carried out. This helps to measure only one current path through the bearing at a time and thus, gives a much clearer picture of the contact capacitance of rolling elements in and out of the load zone. Provided is raw and evaluated measurement data as well as calculation results

    The Influence of Load and Speed on the Initial Breakdown of Rolling Bearings Exposed to Electrical Currents

    Get PDF
    The reason for the failure of electric vehicle drives is increasingly current-induced damage to rolling bearings. Studies show that rolling bearings are more susceptible to current pass-through after the first occurrence of unwanted bearing currents. To investigate this effect, a test plan is introduced with variations in axial and radial loads, as well as rotational speeds. A new bearing is mechanically run-in for each test point and then subjected to a realistic voltage signal of gradually increasing amplitude. After the initial breakdown, the different voltage amplitudes are applied again to investigate the behavior after the initial breakdown. During the whole test, the maximum current, the duration and the dissipated energy of each breakdown are measured. The results provide insights into the processes after the initial breakdown and the stochastic nature of the breakdown behavior

    Deterministic optical polarisation in nitride quantum dots at thermoelectrically cooled temperatures.

    Get PDF
    We report the successful realisation of intrinsic optical polarisation control by growth, in solid-state quantum dots in the thermoelectrically cooled temperature regime (≥200 K), using a non-polar InGaN system. With statistically significant experimental data from cryogenic to high temperatures, we show that the average polarisation degree of such a system remains constant at around 0.90, below 100 K, and decreases very slowly at higher temperatures until reaching 0.77 at 200 K, with an unchanged polarisation axis determined by the material crystallography. A combination of Fermi-Dirac statistics and k·p theory with consideration of quantum dot anisotropy allows us to elucidate the origin of the robust, almost temperature-insensitive polarisation properties of this system from a fundamental perspective, producing results in very good agreement with the experimental findings. This work demonstrates that optical polarisation control can be achieved in solid-state quantum dots at thermoelectrically cooled temperatures, thereby opening the possibility of polarisation-based quantum dot applications in on-chip conditions
    corecore