23 research outputs found
Recommended from our members
The glycosyltransferase EXTL2 promotes proteoglycan deposition and injurious neuroinflammation following demyelination.
Background: Chondroitin sulfate proteoglycans (CSPGs) are potent inhibitors of axonal regrowth and remyelination. More recently, they have also been highlighted as a modulator of macrophage infiltration into the central nervous system in experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis.
Methods: We interrogated results from single nucleotide polymorphisms (SNPs) lying in or close to genes regulating CSPG metabolism in the summary results from two publicly available systematic studies of multiple sclerosis (MS) genetics. A demyelinating injury model in the spinal cord of exostosin-like 2 (EXTL2)-/- mice was used to investigate the effects of dysregulation of EXTL2 on remyelination. Cell cultures of bone marrow-derived macrophages and primary oligodendrocyte precursor cells and neurons were supplemented with purified CSPGs or conditioned media to assess potential mechanisms of action.
Results: The strongest evidence for genetic association was seen for SNPs mapping to the region containing the glycosyltransferase exostosin-like 2 (EXTL2), an enzyme that normally suppresses CSPG biosynthesis. Six of these SNPs showed genomewide significant evidence for association in one of the studies with concordant and nominally significant effects in the second study. We then went on to show that a demyelinating injury to the spinal cord of EXTL2-/- mice resulted in excessive deposition of CSPGs in the lesion area. EXTL2-/- mice had exacerbated axonal damage and myelin disruption relative to wildtype mice, and increased representation of microglia/macrophages within lesions. In tissue culture, activated bone marrow derived macrophages from EXTL2-/- mice overproduce tumor necrosis factor α (TNFα) and matrix metalloproteinases (MMPs).
Conclusions: These results emphasize CSPGs as a prominent modulator of neuroinflammation and they highlight CSPGs accumulating in lesions in promoting axonal injury.Canadian Institutes of Health Sciences
Alberta/Novartis Translational Research Fund
Multiple Sclerosis Society of Canad
Recommended from our members
The glycosyltransferase EXTL2 promotes proteoglycan deposition and injurious neuroinflammation following demyelination
Funder: Canadian Institutes of Health Research; doi: http://dx.doi.org/10.13039/501100000024Abstract: Background: Chondroitin sulfate proteoglycans (CSPGs) are potent inhibitors of axonal regrowth and remyelination. More recently, they have also been highlighted as a modulator of macrophage infiltration into the central nervous system in experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. Methods: We interrogated results from single nucleotide polymorphisms (SNPs) lying in or close to genes regulating CSPG metabolism in the summary results from two publicly available systematic studies of multiple sclerosis (MS) genetics. A demyelinating injury model in the spinal cord of exostosin-like 2 deficient (EXTL2-/-) mice was used to investigate the effects of dysregulation of EXTL2 on remyelination. Cell cultures of bone marrow-derived macrophages and primary oligodendrocyte precursor cells and neurons were supplemented with purified CSPGs or conditioned media to assess potential mechanisms of action. Results: The strongest evidence for genetic association was seen for SNPs mapping to the region containing the glycosyltransferase exostosin-like 2 (EXTL2), an enzyme that normally suppresses CSPG biosynthesis. Six of these SNPs showed genome-wide significant evidence for association in one of the studies with concordant and nominally significant effects in the second study. We then went on to show that a demyelinating injury to the spinal cord of EXTL2−/− mice resulted in excessive deposition of CSPGs in the lesion area. EXTL2−/− mice had exacerbated axonal damage and myelin disruption relative to wild-type mice, and increased representation of microglia/macrophages within lesions. In tissue culture, activated bone marrow-derived macrophages from EXTL2−/− mice overproduce tumor necrosis factor α (TNFα) and matrix metalloproteinases (MMPs). Conclusions: These results emphasize CSPGs as a prominent modulator of neuroinflammation and they highlight CSPGs accumulating in lesions in promoting axonal injury
Blood Signature of Pre-Heart Failure: A Microarrays Study
International audienceBACKGROUND: The preclinical stage of systolic heart failure (HF), known as asymptomatic left ventricular dysfunction (ALVD), is diagnosed only by echocardiography, frequent in the general population and leads to a high risk of developing severe HF. Large scale screening for ALVD is a difficult task and represents a major unmet clinical challenge that requires the determination of ALVD biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: 294 individuals were screened by echocardiography. We identified 9 ALVD cases out of 128 subjects with cardiovascular risk factors. White blood cell gene expression profiling was performed using pangenomic microarrays. Data were analyzed using principal component analysis (PCA) and Significant Analysis of Microarrays (SAM). To build an ALVD classifier model, we used the nearest centroid classification method (NCCM) with the ClaNC software package. Classification performance was determined using the leave-one-out cross-validation method. Blood transcriptome analysis provided a specific molecular signature for ALVD which defined a model based on 7 genes capable of discriminating ALVD cases. Analysis of an ALVD patients validation group demonstrated that these genes are accurate diagnostic predictors for ALVD with 87% accuracy and 100% precision. Furthermore, Receiver Operating Characteristic curves of expression levels confirmed that 6 out of 7 genes discriminate for left ventricular dysfunction classification. CONCLUSIONS/SIGNIFICANCE: These targets could serve to enhance the ability to efficiently detect ALVD by general care practitioners to facilitate preemptive initiation of medical treatment preventing the development of HF
Recommended from our members
Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system
Abstract: Remyelination following CNS demyelination restores rapid signal propagation and protects axons; however, its efficiency declines with increasing age. Both intrinsic changes in the oligodendrocyte progenitor cell population and extrinsic factors in the lesion microenvironment of older subjects contribute to this decline. Microglia and monocyte-derived macrophages are critical for successful remyelination, releasing growth factors and clearing inhibitory myelin debris. Several studies have implicated delayed recruitment of macrophages/microglia into lesions as a key contributor to the decline in remyelination observed in older subjects. Here we show that the decreased expression of the scavenger receptor CD36 of aging mouse microglia and human microglia in culture underlies their reduced phagocytic activity. Overexpression of CD36 in cultured microglia rescues the deficit in phagocytosis of myelin debris. By screening for clinically approved agents that stimulate macrophages/microglia, we have found that niacin (vitamin B3) upregulates CD36 expression and enhances myelin phagocytosis by microglia in culture. This increase in myelin phagocytosis is mediated through the niacin receptor (hydroxycarboxylic acid receptor 2). Genetic fate mapping and multiphoton live imaging show that systemic treatment of 9–12-month-old demyelinated mice with therapeutically relevant doses of niacin promotes myelin debris clearance in lesions by both peripherally derived macrophages and microglia. This is accompanied by enhancement of oligodendrocyte progenitor cell numbers and by improved remyelination in the treated mice. Niacin represents a safe and translationally amenable regenerative therapy for chronic demyelinating diseases such as multiple sclerosis
Recommended from our members
Correction to: Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system.
The article Niacin‑mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system, written by Khalil S. Rawji, Adam M.H. Young, Tanay Ghosh, Nathan J. Michaels, Reza Mirzaei, Janson Kappen, Kathleen L. Kolehmainen, Nima Alaeiilkhchi, Brian Lozinski, Manoj K. Mishra, Annie Pu, Weiwen Tang, Salma Zein, Deepak K. Kaushik, Michael B. Keough, Jason R. Plemel, Fiona Calvert, Andrew J. Knights, Daniel J. Gaffney, Wolfram Tetzlaff, Robin J. M. Franklin and V. Wee Yong, was originally published electronically on the publisher's internet
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Recommended from our members
Niacin-mediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system
Abstract: Remyelination following CNS demyelination restores rapid signal propagation and protects axons; however, its efficiency declines with increasing age. Both intrinsic changes in the oligodendrocyte progenitor cell population and extrinsic factors in the lesion microenvironment of older subjects contribute to this decline. Microglia and monocyte-derived macrophages are critical for successful remyelination, releasing growth factors and clearing inhibitory myelin debris. Several studies have implicated delayed recruitment of macrophages/microglia into lesions as a key contributor to the decline in remyelination observed in older subjects. Here we show that the decreased expression of the scavenger receptor CD36 of aging mouse microglia and human microglia in culture underlies their reduced phagocytic activity. Overexpression of CD36 in cultured microglia rescues the deficit in phagocytosis of myelin debris. By screening for clinically approved agents that stimulate macrophages/microglia, we have found that niacin (vitamin B3) upregulates CD36 expression and enhances myelin phagocytosis by microglia in culture. This increase in myelin phagocytosis is mediated through the niacin receptor (hydroxycarboxylic acid receptor 2). Genetic fate mapping and multiphoton live imaging show that systemic treatment of 9–12-month-old demyelinated mice with therapeutically relevant doses of niacin promotes myelin debris clearance in lesions by both peripherally derived macrophages and microglia. This is accompanied by enhancement of oligodendrocyte progenitor cell numbers and by improved remyelination in the treated mice. Niacin represents a safe and translationally amenable regenerative therapy for chronic demyelinating diseases such as multiple sclerosis