16 research outputs found
Oligocene to Miocene terrestrial climate change and the demise of forests on Wilkes Land, East Antarctica
The question whether Cenozoic climate was warm enough to support a substantial vegetation cover on the Antarctic continent is of great significance to the ongoing controversial debate on the dynamic behaviour of Antarctic land ice during the transition from a greenhouse to an icehouse world. Here we present palynological results from an Oligocene to Miocene sediment record provided by the Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin (East Antarctica). The Oligocene assemblages (33.9-23 Ma) are dominated by pollen and spores from temperate forest and sub-Antarctic shrub vegetation inhabiting different altitudinal zones. These include a lowland cold temperate forest with Dacrydium and Lagarostrobos (both common in southern forests of New Zealand and Tasmania today) and a high altitude tundra shrubland comprising Microcachrys, Nothofagus (southern beech) and Podocarpaceae conifers. A decline in pollen percentages of Dacrydium and Lagarostrobos and absence of Proteaceae indicate climate cooling during the late Oligocene (�25-23 Ma). However, the continuous presence of Lagarostrobos suggests that the full transition to a tundra environment had not yet occurred and climate on Wilkes Land during the late Oligocene was still warm enough to support forest vegetation in sheltered areas. Temperature reconstructions derived from the fossil pollen assemblages using the Coexistence Approach suggest mean annual temperatures (MATs) between 6.7-13.7�C during the early Oligocene and a drop of minimum MATs to 5.8�C in the late Oligocene. Pollen of “unambiguous” forest indicators, such as Lagarostrobos, are absent in the Miocene sediment record (16.2 -12.5 Ma) but temperatures were still high enough (minimum MATs > 5�C) to sustain a woody sub-Antarctic vegetation under partially ice-free conditions. Wilkes Land provides a unique record of Antarctic vegetation change from a subtropical, highly diverse Eocene rainforest to an Oligocene cold temperate forest and an impoverished Miocene sub Antarctic shrubland. The pollen record suggests that temperatures were higher than in the Ross Sea region (i.e. Andrill, Cape Roberts) and the Wilkes Land margins were possibly one of the last refugia for temperate forest taxa on Antarctica during the Late Oligocene
The role of climate in the spread of modern humans into Europe
The spread of anatomically modern humans (AMH) into Europe occurred when shifts in the North Atlantic meridional overturning circulation triggered a series of large and abrupt climate changes during the last glacial. However, the role of climate forcing in this process has remained unclear. Here we present a last glacial record that provides insight into climate-related environmental shifts in the eastern Mediterranean region, i.e. the gateway for the colonisation of Europe by AMH. We show that the environmental impact of the Heinrich Event H5 climatic deterioration c. 48 kyr ago was as extreme as that of the glacial maximum of Marine Isotope Stage (MIS) 4 when most of Europe was deserted by Neanderthals. We argue that Heinrich H5 resulted in a similar demographic vacuum so that invasive AMH populations had the opportunity to spread into Europe and occupy large parts before the Neanderthals were able to reoccupy this territory. This spread followed the resumption of the Atlantic meridional overturning circulation at the beginning of Greenland Interstadial (GIS) 12 c. 47 kyr ago that triggered an extreme and rapid shift from desert-steppe to open woodland biomes in the gateway to Europe. We conclude that the extreme environmental impact of Heinrich H5 within a situation of competitive exclusion between two closely related hominids species shifted the balance in favour of modern human
Obliquity Influence on Low-Latitude Coastal Precipitation in Eastern Brazil During the Past similar to 850 kyr
Paleoclimate records from tropical South America typically show precession-paced variability in rainfall, caused by insolation-driven changes in the South American Monsoon System, however this mechanism may not be responsible for hydroclimate change outside of the core monsoon domain, such as in the coastal zone of tropical eastern Brazil. Our findings are based on a similar to 850 kyr-long multiproxy record from a marine sediment core collected from the eastern Brazilian margin that represents the longest continuous record of South American hydroclimate to date. Utilizing the ln (K/Al) chemical weathering proxy from the core, we determine that past hydroclimate change in the coastal zone was primarily modulated by obliquity forcing. We demonstrate that high obliquity is associated with an increase in the boreal summer interhemispheric insolation contrast which decreases the zonality of the southern trade winds and reduces moisture advection to the coastal zone. Based on the long-term coherence between the ln (K/Al) record and benthic delta C-13 records from the Atlantic during Marine Isotope Stages 16-13, we infer that an increase in the strength of the overturning circulation, caused by Northern Hemisphere high-latitude forcing, may have produced surface cooling in the western tropical South Atlantic which led to reduced moisture advection to the coastal zone. We suggest that this mechanism may have also caused the amplification in millennial-scale variability in the coastal hydroclimate system, which began after the decoupling of the coastal hydroclimate system from obliquity forcing
Identification of the Paleocene-Eocene boundary in coastal strata in the Otway Basin, Victoria, Australia
Detailed, stratigraphically well-constrained environmental reconstructions are available for Paleocene and Eocene strata at a range of sites in the southwest Pacific Ocean (New Zealand and East Tasman Plateau; ETP) and Integrated Ocean Discovery Program (IODP) Site U1356 in the south of the Australo-Antarctic Gulf (AAG). These reconstructions have revealed a large discrepancy between temperature proxy data and climate models in this region, suggesting a crucial error in model, proxy data or both. To resolve the origin of this discrepancy, detailed reconstructions are needed from both sides of the Tasmanian Gateway. Paleocene-Eocene sedimentary archives from the west of the Tasmanian Gateway have unfortunately remained scarce (only IODP Site U1356), and no well-dated successions are available for the northern sector of the AAG. Here we present new stratigraphic data for upper Paleocene and lower Eocene strata from the Otway Basin, southeast Australia, on the (north)west side of the Tasmanian Gateway. We analyzed sediments recovered from exploration drilling (Latrobe-1 drill core) and outcrop sampling (Point Margaret) and performed high-resolution carbon isotope geochemistry of bulk organic matter and dinoflagellate cyst (dinocyst) and pollen biostratigraphy on sediments from the regional lithostratigraphic units, including the Pebble Point Formation, Pember Mudstone and Dilwyn Formation. Pollen and dinocyst assemblages are assigned to previously established Australian pollen and dinocyst zonations and tied to available zonations for the SW Pacific. Based on our dinocyst stratigraphy and previously published planktic foraminifer biostratigraphy, the Pebble Point Formation at Point Margaret is dated to the latest Paleocene. The globally synchronous negative carbon isotope excursion that marks the Paleocene-Eocene boundary is identified within the top part of the Pember Mudstone in the Latrobe-1 borehole and at Point Margaret. However, the high abundances of the dinocyst Apectodinium prior to this negative carbon isotope excursion prohibit a direct correlation of this regional bio-event with the quasi-global Apectodinium acme at the Paleocene-Eocene Thermal Maximum (PETM; 56Ma). Therefore, the first occurrence of the pollen species Spinizonocolpites prominatus and the dinocyst species Florentinia reichartii are here designated as regional markers for the PETM. In the Latrobe-1 drill core, dinocyst biostratigraphy further indicates that the early Eocene (∼56-51Ma) sediments are truncated by ∼ 10Myr long hiatus overlain by middle Eocene (∼ 40Ma) strata. These sedimentary archives from southeast Australia may prove key in resolving the model-data discrepancy in this region, and the new stratigraphic data presented here allow for detailed comparisons between paleoclimate records on both sides of the Tasmanian Gateway
Identification of the Paleocene-Eocene boundary in coastal strata in the Otway Basin, Victoria, Australia
Detailed, stratigraphically well-constrained environmental reconstructions are available for Paleocene and Eocene strata at a range of sites in the southwest Pacific Ocean (New Zealand and East Tasman Plateau; ETP) and Integrated Ocean Discovery Program (IODP) Site U1356 in the south of the Australo-Antarctic Gulf (AAG). These reconstructions have revealed a large discrepancy between temperature proxy data and climate models in this region, suggesting a crucial error in model, proxy data or both. To resolve the origin of this discrepancy, detailed reconstructions are needed from both sides of the Tasmanian Gateway. Paleocene-Eocene sedimentary archives from the west of the Tasmanian Gateway have unfortunately remained scarce (only IODP Site U1356), and no well-dated successions are available for the northern sector of the AAG. Here we present new stratigraphic data for upper Paleocene and lower Eocene strata from the Otway Basin, southeast Australia, on the (north)west side of the Tasmanian Gateway. We analyzed sediments recovered from exploration drilling (Latrobe-1 drill core) and outcrop sampling (Point Margaret) and performed high-resolution carbon isotope geochemistry of bulk organic matter and dinoflagellate cyst (dinocyst) and pollen biostratigraphy on sediments from the regional lithostratigraphic units, including the Pebble Point Formation, Pember Mudstone and Dilwyn Formation. Pollen and dinocyst assemblages are assigned to previously established Australian pollen and dinocyst zonations and tied to available zonations for the SW Pacific. Based on our dinocyst stratigraphy and previously published planktic foraminifer biostratigraphy, the Pebble Point Formation at Point Margaret is dated to the latest Paleocene. The globally synchronous negative carbon isotope excursion that marks the Paleocene-Eocene boundary is identified within the top part of the Pember Mudstone in the Latrobe-1 borehole and at Point Margaret. However, the high abundances of the dinocyst Apectodinium prior to this negative carbon isotope excursion prohibit a direct correlation of this regional bio-event with the quasi-global Apectodinium acme at the Paleocene-Eocene Thermal Maximum (PETM; 56Ma). Therefore, the first occurrence of the pollen species Spinizonocolpites prominatus and the dinocyst species Florentinia reichartii are here designated as regional markers for the PETM. In the Latrobe-1 drill core, dinocyst biostratigraphy further indicates that the early Eocene (∼56-51Ma) sediments are truncated by ∼ 10Myr long hiatus overlain by middle Eocene (∼ 40Ma) strata. These sedimentary archives from southeast Australia may prove key in resolving the model-data discrepancy in this region, and the new stratigraphic data presented here allow for detailed comparisons between paleoclimate records on both sides of the Tasmanian Gateway
Middle Miocene environmental and climatic evolution at the Wilkes Land margin, East Antarctica
Integrated Ocean Drilling Program (IODP) Expedition 318 successfully drilled a Middle Miocene (~ 17 – 12.5 Ma) record from the Wilkes Land Margin at Site U1356A (63 °18.6138′S, 135 °59.9376′E), located at the transition between the continental rise and the abyssal plain at 4003 mbsl. We present a multiproxy palynological (dinoflagellate cyst, pollen and spores), sedimentological and organic geochemical (TEX86, MBT/CBT) study, which unravels the environmental and climate variability across the Miocene Climatic Optimum (MCO, ~17-15 Ma) and the Mid Miocene Climate Transition (MMCT). Several independent lines of evidence indeed suggest a relatively warm climate during the MCO. Dinocyst and pollen assemblage diversity at the MCO is unprecedented for a Neogene Antarctic record and indicates a temperate, sea ice-free marine environment, with woody sub-antarctic vegetation with elements of forest/shrub tundra and peat lands along the coast. These results are further confirmed by relatively warm TEX86-derived Sea Surface Temperatures and mild MBT-derived continental temperatures, and by the absence of glacially derived deposits and very few ice-rafted clasts. A generally colder but highly dynamic environment is suggested for the interval 15-12.5 Ma